Skip to main content

Advertisement

Log in

Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic adjunct for antiretroviral drug-induced neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alrashdan MS et al (2010) Thirty minutes of low intensity electrical stimulation promotes nerve regeneration after sciatic nerve crush injury in a rat model. Acta Neurol Belg 110:168–179

    PubMed  Google Scholar 

  • Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133:189–204. doi:10.1016/j.pharmthera.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  • Bacellar H et al (1994) Temporal trends in the incidence of HIV-1-related neurologic diseases: Multicenter AIDS Cohort Study, 1985–1992. Neurology 44:1892–1900

    Article  CAS  PubMed  Google Scholar 

  • Balderas E, Ateaga-Tlecuitl R, Rivera M, Gomora JC, Darszon A (2012) Niflumic acid blocks native and recombinant T-type channels. J Cell Physiol 227:2542–2555. doi:10.1002/jcp.22992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beydoun A, Backonja M-M (2003) Mechanistic stratification of antineuralgic agents. J Pain Symptom Manage 25:S18–S30

    Article  CAS  PubMed  Google Scholar 

  • Boadas-Vaello P, Castany S, Homs J, Alvarez-Perez B, Deulofeu M, Verdu E (2016) Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 54:330–340. doi:10.1038/sc.2015.225

    Article  CAS  PubMed  Google Scholar 

  • Byers M, Bonica J (2001) Peripheral pain mechanisms and nociceptor plasticity Bonica’s Management of Pain 3rd ed Baltimore; MD. Lippincott Williams & Wilkins, Philadelphia, pp 26–72

    Google Scholar 

  • Chopra K, Tiwari V, Arora V, Kuhad A (2010) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11:950–957. doi:10.1016/j.jpain.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Claiborne A (1985) Catalase activity. CRC Handb Methods Oxyg Radic Res 1:283–284

    Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    Article  CAS  PubMed  Google Scholar 

  • Coppey LJ, Davidson EP, Dunlap JA, Lund DD, Yorek MA (2000) Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. Int J Exp Diabetes Res 1:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corey DP (2003) New TRP channels in hearing and mechanosensation. Neuron 39:585–588

    Article  CAS  PubMed  Google Scholar 

  • Dalakas MC, Semino-Mora C, Leon-Monzon M (2001) Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2’3’-dideoxycytidine (ddC). Lab Investig J Tech Methods Pathol 81:1537–1544

    Article  CAS  Google Scholar 

  • Duraku LS et al (2014) Rotterdam advanced multiple plate: a novel method to measure cold hyperalgesia and allodynia in freely behaving rodents. J Neurosci Methods 224:1–12. doi:10.1016/j.jneumeth.2013.12.006

    Article  PubMed  Google Scholar 

  • Eddy NB, Touchberry CF, Lieberman JE (1950) Synthetic analgesics; methadone isomers and derivatives. J Pharmacol Exp Ther 98:121–137

    CAS  PubMed  Google Scholar 

  • Eutamene H et al (2000) Antinociceptive effect of pregabalin in septic shock-induced rectal hypersensitivity in rats. J Pharmacol Exp Ther 295:162–167

    CAS  PubMed  Google Scholar 

  • Fernyhough P, Calcutt NA (2010) Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47:130–139

    Article  CAS  PubMed  Google Scholar 

  • Flatow J, Buckley P, Miller BJ (2013) Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 74:400–409. doi:10.1016/j.biopsych.2013.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajraj NM (2007) Pregabalin: its pharmacology and use in pain management. Anest Analg 105:1805–1815

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Greish SM, Abogresha NM, Zaitone SA (2014) Duloxetine modulates vincristine-induced painful neuropathy in rats. J Phys Pharm Adv 1:420–430

    Google Scholar 

  • Groninger H, Schisler RE (2012) Topical capsaicin for neuropathic pain #255. J Palliat Med 15:946–947. doi:10.1089/jpm.2012.9571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha K-Y, Kim Y-H, Rhyu K-W, Kwon S-E (2008) Pregabalin as a neuroprotector after spinal cord injury in rats. Eur Spine J 17:864–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha K-Y, Carragee E, Cheng I, Kwon S-E, Kim Y-H (2011) Pregabalin as a neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J Korean Med Sci 26:404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson P, Lacerenza M, Marchettini P (2001) Aspects of clinical and experimental neuropathic pain: the clinical perspective Prog. Pain Res Manag 21:1–18

    Google Scholar 

  • Heitmann H et al (2015) Prevalence of neuropathic pain in early multiple sclerosis. Mult Scler J 21:407

    Google Scholar 

  • Huang W et al (2013) A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 154:560–575. doi:10.1016/j.pain.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  • Hulgan T et al (2005) Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS 19:1341–1349

    Article  PubMed  Google Scholar 

  • Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152:2204–2205. doi:10.1016/j.pain.2011.06.017

    Article  PubMed  Google Scholar 

  • Jiang H et al (2012) Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels. Biochem Pharmacol 83:923–931

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Roberts D (1968) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20:302–304

    Article  CAS  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210. doi:10.1038/35093019

    Article  CAS  PubMed  Google Scholar 

  • Kallianpur AR, Hulgan T (2009) Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics 10:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BM, Maeng K, Lee K-H, Hong SH (2011) Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells. Cancer Lett 300:134–144

    Article  CAS  PubMed  Google Scholar 

  • Klose C et al (2011) Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 162:1757–1769. doi:10.1111/j.1476-5381.2010.01186.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauf PA, Mann NA (1984) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J Gen Physiol 83:703–725

    Article  CAS  PubMed  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kovaříková M, Hofmanová J, Souček K, Kozubík A (2004) The effects of TNF-α and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status. Differentiation 72:23–31

    Article  PubMed  Google Scholar 

  • Kulkarni S (1999) Handbook of experimental pharmacology. 3rd rev Ed. Vallabh Prakashan, New Delhi, pp 123–125

    Google Scholar 

  • Lerma J, Martin del Rio R (1992) Chloride transport blockers prevent N-methyl-D-aspartate receptor-channel complex activation. Mol Pharmacol 41:217–222

    CAS  PubMed  Google Scholar 

  • Manji H (2000) Neuropathy in HIV infection. Curr Opin Neurol 13:589–592

    Article  CAS  PubMed  Google Scholar 

  • Martinov T, Mack M, Sykes A, Chatterjea D (2013) Measuring changes in tactile sensitivity in the hind paw of mice using an electronic von Frey apparatus. J Vis Exp. doi:10.3791/51212

    PubMed  PubMed Central  Google Scholar 

  • Mendlik MT, Uritsky TJ (2015) Treatment of neuropathic pain current treatment options in neurology 17:50. doi:10.1007/s11940-015-0381-2

    Article  PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598

    Article  CAS  PubMed  Google Scholar 

  • Nicholson B (2000) Gabapentin use in neuropathic pain syndromes. Acta Neurol Scand 101:359–371

    Article  CAS  PubMed  Google Scholar 

  • Nickel FT, Seifert F, Lanz S, Maihofner C (2012) Mechanisms of neuropathic pain. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 22:81–91. doi:10.1016/j.euroneuro.2011.05.005

    Article  CAS  Google Scholar 

  • Palta P, Samuel LJ, Miller ER 3rd, Szanton SL (2014) Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 76:12–19. doi:10.1097/PSY.0000000000000009

    Article  CAS  PubMed  Google Scholar 

  • Scarsella A et al (2002) Stavudine-associated peripheral neuropathy in zidovudine-naive patients: effect of stavudine exposure and antiretroviral experience. Adv Ther 19:1–8

    Article  CAS  PubMed  Google Scholar 

  • Shim J-K, Ma Q, Zhang Z, Podgoreanu MV, Mackensen GB (2014) Effect of pregabalin on cerebral outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg 148:298–303

    Article  CAS  PubMed  Google Scholar 

  • Siddall PJ, Cousins MJ (1997) Spinal pain mechanisms Spine 22:98–104

    CAS  PubMed  Google Scholar 

  • Sinkkonen ST, Mansikkamaki S, Moykkynen T, Luddens H, Uusi-Oukari M, Korpi ER (2003) Receptor subtype-dependent positive and negative modulation of GABA(A) receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug. Mol Pharmacol 64:753–763. doi:10.1124/mol.64.3.753

    Article  CAS  PubMed  Google Scholar 

  • Talbot S, De Brito Gariepy H, Saint-Denis J, Couture R (2012) Activation of kinin B1 receptor evokes hyperthermia through a vagal sensory mechanism in the rat. J Neuroinflamm 9:214. doi:10.1186/1742-2094-9-214

    CAS  Google Scholar 

  • UNAIDS (2009) AIDS epidemic update, December 2009. World Health Organization

  • VanDenKerkhof EG, Mann EG, Torrance N, Smith BH, Johnson A, Gilron I (2016) An epidemiological study of neuropathic pain symptoms in Canadian adults pain research & management. J Can Pain Soc (Journal de la Societe Canadienne pour le Traitement de la Douleur) 2016:9815750. doi:10.1155/2016/9815750

    Google Scholar 

  • Verkhratsky A, Fernyhough P (2008) Mitochondrial malfunction and Ca 2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium 44:112–122

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Singh N, Singh Jaggi A (2014) Pregabalin in neuropathic pain: evidences and possible mechanisms. Current Neuropharmacol 12:44–56. doi:10.2174/1570159X1201140117162802

    Article  CAS  Google Scholar 

  • Wills ED (1965) Mechanisms of lipid peroxide formation in tissues. Role Metals Haematin Proteins Catal Oxid Unsaturat Fatty Acids Biochim Biophys Acta 98:238–251

    CAS  Google Scholar 

  • Yamamoto T, Takahara A (2009) Recent updates of N-type calcium channel blockers with therapeutic potential for neuropathic pain and stroke. Curr Top Med Chem 9:377–395

    Article  CAS  PubMed  Google Scholar 

  • Yi J-H, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Yao JK (2013) Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:197–199. doi:10.1016/j.pnpbp.2013.03.003

    Article  PubMed  Google Scholar 

  • Zheng X, Ouyang H, Liu S, Mata M, Fink DJ, Hao S (2011) TNFalpha is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats. Brain Behav Immun 25:1668–1676. doi:10.1016/j.bbi.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research grants sanctioned by SERB, Department of Science and Technology (DST), All India Council of Technical Education (F. No. 11-25/RIFD/CAYT/POL-II/2013-14) and University Grants Commission (UGC), New Delhi to Dr. Anurag Kuhad are gratefully acknowledged. Junior Research Fellowship sanctioned by AICTE, New Delhi to Mr. Lovish Marwaha is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Kuhad.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marwaha, L., Bansal, Y., Singh, R. et al. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacol 24, 319–334 (2016). https://doi.org/10.1007/s10787-016-0285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-016-0285-0

Keywords

Navigation