Skip to main content

Advertisement

Log in

Anti-inflammatory effect of certain dimethoxy flavones

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Objective

The aim of the present study was to evaluate the anti-inflammatory effect of four dimethoxy flavone derivatives; 7,2′-dimethoxy flavone, 7,3′-dimethoxy flavone, 7,4′-dimethoxy flavone and 7,8,-dimethoxy flavone and to investigate the possible cellular mechanisms involved.

Materials and methods

The acute anti-inflammatory effect of dimethoxy flavones was investigated by carrageenan induced hind paw oedema in rats. Further, the effect of dimethoxy flavones on certain mediators of pain and inflammation like cyclooxygenases (COX-1 and COX-2), pro-inflammatory cytokines (IL-1β and TNF-α) and free radical scavenging activity (NO and LPO) were investigated by using in vitro tests.

Results

The investigated dimethoxy flavones produced a significant, dose and time dependent reduction of carrageenan induced paw oedema in rats with a maximum inhibition of 52.4 % observed for 7,4′-dimethoxy flavone. Although, the test compounds inhibited both the isoforms of cyclooxygenase, a higher degree of inhibition on COX-2 was evident. A concentration dependent inhibition of other inflammatory cytokines like tumor necrosis factor-α and interleukin-1β was identified in the present study. 7,4′-dimethoxy flavone was found to be maximally effective in inhibiting nitrite ion free radical generation and 7,8-dimethoxy flavone was more active in inhibiting lipid peroxidation than the other compounds.

Conclusion

The results of the present study reveal the anti-inflammatory action of the investigated dimethoxy flavones. Inhibition of cyclooxygenases, cytokines and reactive oxygen species, observed in subsequent experiments may be suggested as possible mechanisms involved in the action of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal OP, Nagarathnam A (1981) Radioprotective property of flavonoids in man. Toxicon 19:201–204

    Article  CAS  PubMed  Google Scholar 

  • Alcaraz MJ, Ferrandiz ML (1987) Modification of arachidonic acid metabolism by flavonoids. J Ethnopharmacol 21:209–229

    Article  CAS  PubMed  Google Scholar 

  • Arivudainambi R, Viswanathan S, Thirugnana sambantham P, Reddy MK, Dewan ML, Sijheer JS, Gopalakrishnan C, Vijayasekaran V (1996) Anti-inflammatory activity of flavone and its hydroxy derivatives. A structure activity study. Ind J Pharm Sci 58:18–21

    Google Scholar 

  • Barksby HE, Lea SR, Preshaw PM, Taylor JJ (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol 149:217–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botham KM, Mayes PA (2006) Lipids of physiologic significance: In Murray RK, Granner DK, Rodwell VW (eds) Harper’s illustrated biochemistry, 27th edn. McGraw Hill Medical Publishing Division, Singapore, pp 121–131

  • Carvalho JC, Ferreira LP, Santos DSL, Correa MJ, Campos DOLM, Bastos JK, Sarti SJ (1999) Antiinflammatory activity of flavone and some of its derivatives from Virola Michelli heckle (Myristicaceae). J Ethnopharmacol 64:173–177

    Article  CAS  PubMed  Google Scholar 

  • Creange A, Barlovatz-Meimon G, Gherardi RK (1997) Cytokines and peripheral nerve disorders. Eur Cytokine Netw 8:145–151

    CAS  PubMed  Google Scholar 

  • Cunha TM, Verri WA Jr, Valeria DA, Guerrero AT, Noqueira LG, Vieira SM, Souza DG, Teixeira MM, Poole S, Ferreira SH, Cunha FQ (2008) Role of cytokines in mediating mechanical hypernociception in a model of delayed-type hypersensitivity in mice. Eur J Pain 12:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Damas J, Bourdon V, Remacle-Volon G, Lecomte J (1985) Pro-inflammatory flavonoids which are inhibitors of prostaglandin biosynthesis. Prostaglandins Leukot Med 19:11–24

    Article  CAS  PubMed  Google Scholar 

  • Dehmlow C, Erhard J, De Groot H (1996) Inhibition of Kupffer cell functions as an explanation from the hepatoprotective properties of silibinin. Hepatology 23:749–754

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA, Cannon JG, Wolff S et al (1986) Tumor necrosis factor [catechin] is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 163:1433–1450

    Article  CAS  PubMed  Google Scholar 

  • Dubovy P, Jancalek R, Klusakova I, Svizenska I, Pejchalova K (2006) Intra- and extraneuronal changes of immunofluorescence staining for TNF-alpha and TNFR1 in the dorsal root ganglia of rat peripheral neuropathic pain models. Cell Mol Neurobiol 26:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Empl M, Renaud S, Erne B, Fuhr P, Straube A, Schaeren-Wiemers N, Steck AJ (2001) TNF-alpha expression in painful and non-painful neuropathies. Neurology 56:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Fang SH, Hoi YC, Chang WC, Hsiu SL, Chao PL, Chang BL (2003) Morin sulphates/glucuronides exert anti-inflammatory activity on activated macrophages and decrease the incidence of septic shock. Life Sci 74:743–756

    Article  CAS  PubMed  Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33(12):1061–1080

    Article  CAS  PubMed  Google Scholar 

  • Genevay S, Finckh A, Payer M, Mezin F, Tessitore E, Gabay C, Guerne PA (2008) Elevated levels of tumor necrosis factor-alpha in periradicular fat tissue in patients with radiculopathy from herniated disc. Spine 33:2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanne baun SR (1982) Analysis of nitrate and (15 N) nitrate in biological fluids. Anal chem 126:131–137

    CAS  Google Scholar 

  • Green DR, Reed JS (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Gupta OP, Singh S, Bani S, Sharma N, Malhotra S, Gupta BD, Banergee SK, Handa SS (2000) Antiinflammatory and antiarthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomed 1:21–24

    Article  Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850

    Article  CAS  PubMed  Google Scholar 

  • Havsteen BH (2002) The Biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  CAS  PubMed  Google Scholar 

  • Hougee S, Sanders A, Faber J, Graus YMF, Van der berg WB, Garssen J, Smit HF, Hoijer MA (2005) Decreased proinflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem Pharmacol 69:241–248

    Article  CAS  PubMed  Google Scholar 

  • Hoult JR, Moroney MA, Paya M (1994) Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase. Methods Enzymol 234:443–454

    Article  CAS  PubMed  Google Scholar 

  • Jeanjean AP, Moussaoui SM, Maloteaux JM (1995) Interleukin-1 beta induces long term increase of axonally transported opiate receptors and substance P. Neuroscience 68:151–157

    Article  CAS  PubMed  Google Scholar 

  • Kamalakannan P, Vidyalakshmi K, Viswanathan S, Ramasamy S (2014) Antinociceptive effect of certain dimethoxy flavones in mice. Eur J Pharmacol 727:148–157

    Article  Google Scholar 

  • Kim HP, Mani I, Iversen L, Ziboh VA (1998) Effects of naturally occurring flavonoids and bioflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea pigs. Prostag Leukot Essent Fatty Acids 58:17–24

    Article  CAS  Google Scholar 

  • Krane SM, Conca WML, Stephenson EP, Amento MB, Goldring MB (1990) Mechanisms of matrix degradation in rheumatoid arthritis. Ann N Y Acad Sci 580:340–354

    Article  CAS  PubMed  Google Scholar 

  • Leung L, Cahill CM (2010) TNF-α and neuropathin pain—a review. J Neuroinflammation 7:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Li S, Min-Hsiung P, Chih-Yu L, Do T, Yu W, Fereidoon S, Chi-Tang H (2009) Chemistry and health effects of polymethoxy flavones and hydoxylated polymethoxy flavones. J Func Foods 1:2–12

    Article  CAS  Google Scholar 

  • Liang YC, Tsai SH, Tsai DC, Shian L, Kunclin J Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of proliferators-activated receptor–γ by flavonoids in mouse macrophages

  • Lin N, Sato T, Takayama Y, Mimaki Y, Sashida Y, Yano M, Ito A (2003) Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 65:2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Naraba H, Murakami M, Kudo I, Yamaki K, Veno A, Ohishi S (1997) Concordant induction of prostaglandin E2 synthase with cyclooxygenase—2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysacharide—stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 230:110–114

    Article  CAS  PubMed  Google Scholar 

  • Michaela Kress (2010) Nociceptors sensitization by proinflammatory cytokines and chemokines. Open Pain J 3:97–107

    Article  Google Scholar 

  • Murakami A, Shigemori T, Ohigashi H (2005) Zingiberaceous and citrus constituents, 1′-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 murine macrophages through different modes of action. J Nutr 135:2987S–2992S

    CAS  PubMed  Google Scholar 

  • Muthiah NS, Viswanathan S, Thirugnana sambantham P, Reddy MK, Vijayasekaran V (1993) Antiinflammatory activity of flavone and its mono-methoxy derivatives. A structure activity study. Ind J Pharm Sci 55:180–183

    CAS  Google Scholar 

  • Nair MP, Mahajan S, Reynolds JL, Ravikumar A, Nair H, Schwartz SA, Kandaswami C (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF- kβ system. Clin Vacc Immunology 13:319–328

    Article  CAS  Google Scholar 

  • Nigam S, Schewe T (2000) Phospholipase A(2)s and lipid peroxidation. Biochim Biophys Acta 1488(1–2):176–181

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Olajide OA, Makinde MJ, Awe SO (1999) Effectsof the aqueous extract of Bridelia ferruginea stem bark on carrageenan-induced edema and granuloma tissue formation in rats and mice. J Ethanopharmacol 66:113–117

    Article  CAS  Google Scholar 

  • Parmar NS, Ghosh MN (1978) Antiinflammatory activity of gossypin, a bioflavonoid isolated from Hibiscus vitifolius Linn. Ind J Pharmacol 10:277–293

    CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1996) Bioactivity of flavonoids. Pol J Pharmacol 48:555–584

    CAS  PubMed  Google Scholar 

  • Salvemini D, Neumann WL (2009) Peroxynitrite: a strategic linchpin of opioid analgesic tolerance. Trends Pharmacol Sci 30:194–202

    Article  CAS  PubMed  Google Scholar 

  • Salvemini D, Neumann WL (2010) Targeting peroxynitrite driven nitroxidative stress with synzymes: a novel therapeutic approach in chronic pain management. Life Sci 86:604–614

    Article  CAS  PubMed  Google Scholar 

  • Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweizer A, Feige U, Fontana A (1988) Interleukin 1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels. Agents Actions 25:246–251

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Mamata M, Sowmya G, Richa T, Anirban B, Pankaj S, Ellora S (2007) Modulation of interleukin-1β mediated inflammatory responses in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull 73:55–63

    Article  CAS  PubMed  Google Scholar 

  • Shoskes DA (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66:147–152

    Article  CAS  PubMed  Google Scholar 

  • Sorata Y, Takahama U, Kimura M (1984) Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochim Biophys Acta 799:313–317

    Article  CAS  PubMed  Google Scholar 

  • Thirugnana sambantham P, Viswanathan S, Ramaswamy S, Krishnamoorty V, Mythirayee CI, Kameswaran L (1993) Analgesic activity of certain flavones derivatives: a structure activity study. Clin Expl Pharmacol Physiol 20:59–63

    Article  CAS  Google Scholar 

  • Tordera M, Ferrandiz ML, Alcaraz MJ (1994) Influence of anti-inflammatory flavonoids on degranulation and arachiodonic acid release in rat neutrophils. Z. Naturforsch (C) 49:235–240

    CAS  Google Scholar 

  • Umamaheswari S (2008) Characterization of antinociceptive and anti-inflammatory effects of certain dihydroxy flavones. Ph.D. Thesis, Sri Ramachandra University, Chennai

  • Van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214:755–759

    Article  CAS  PubMed  Google Scholar 

  • Vidyalakshmi K, Kamalakannan P, Viswanathan S, Ramasamy S (2012) Anti-inflammatory effect of certain dihydroxy flavones and the mechanism involved. Anti-inflammatory Anti-allergy agents Med Chem 11:253–261

    Article  CAS  Google Scholar 

  • Wagner R, Myers RR (1996) Schwann cells produce tumor necrosis factor alpha expression in injured and non-injured nerves. Neuroscience 73:625–629

    Article  CAS  PubMed  Google Scholar 

  • Wang PF, Zheng RL (1992) Inhibition of the auto oxidation of linoleic acid by flavonoids in micelles. Chem Phy Lipids 63:37–40

    Article  CAS  Google Scholar 

  • Whittle BJR, Higgs GA, Eakins KE, Moncada S, Vane JR (1980) Selective inhibition of prostaglandin production in inflammatory exudates and gastric mucosa. Nature 284:271

    Article  CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenan–induced edema in the hind paw of the rats as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Robertson DL, Simmons DL (1992) Mitogen-inducible prostaglandin G/H synthase: a new target for nonsteroidal anti-inflammatory drugs. Drug Dev Res 25:249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I acknowledge that this research work is carried out without any financial assistance from the university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalakannan Pandurangan.

Ethics declarations

Conflict of interest

As first author I declare that there is no competing interests between the authors in relation to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, K., Krishnappan, V., Subramanian, V. et al. Anti-inflammatory effect of certain dimethoxy flavones. Inflammopharmacol 23, 307–317 (2015). https://doi.org/10.1007/s10787-015-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-015-0242-3

Keywords

Navigation