Skip to main content

Advertisement

Log in

Antibacterial and immunomodulatory properties of azithromycin treatment implications for periodontitis

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Macrolide antibiotics have been found to possess not only antimicrobial properties, but also modulate inflammation. In this review the multi-faceted properties of azithromycin are discussed. Due to the unique anti-inflammatory and antimicrobial properties, macrolides, and especially azithromycin, are currently used for a number of conditions which have both an inflammatory and microbial component. For the same reason, azithromycin may be of value as an adjunct in the management of periodontitis which, although driven by an infectious component, is largely a result of uncontrolled chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelghaffar H, Vazifeh D, Labro MT (1996) Comparison of various macrolides on stimulation of human neutrophil degranulation in vitro. J Antimicrob Chemother 38:81–93

    Article  PubMed  CAS  Google Scholar 

  • Addy LD, Martin MV (2004) Azithromycin and dentistry—a useful agent? Br Dent J 197:141–143

    Article  PubMed  CAS  Google Scholar 

  • Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011a) Immunomodulatory effects of macrolide antibiotics—Part 1: biological mechanisms. Respiration 81:67–74

    Article  PubMed  CAS  Google Scholar 

  • Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011b) Immunomodulatory effects of macrolide antibiotics—Part 2: advantages and disadvantages of long-term, low-dose macrolide therapy. Respiration 81:75–87

    Article  PubMed  CAS  Google Scholar 

  • Ambrose KD, Nisbet R, Stephens DS (2005) Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 49:4203–4209

    Article  PubMed  CAS  Google Scholar 

  • Araujo L, Demoly P (2008) Macrolides allergy. Curr Pharmacol Decis 14:2840–2862

    Article  CAS  Google Scholar 

  • Asano K, Kamakazu K, Hisamitsu T, Suzaki H (2001a) Modulation of Th2 type cytokine production from human peripheral blood leukocytes by a macrolide antibiotic, roxithromycin, in vitro. Int Immunopharmacol 1:1913–1921

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Suzuki M, Shimane T, Suzaki H (2001b) Suppression of co-stimulatory molecule expressions on splenic B lymphocytes by a macrolide antibiotic, roxithromycin in vitro. Int Immunopharmacol 1:1385–1392

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12:141–179

    Article  PubMed  CAS  Google Scholar 

  • Bartold PM, Wiebkin OW, Thonard JC (1984) The effect of oxygen-derived free radicals on gingival proteoglycans and hyaluronic acid. J Periodontal Res 19:390–400

    Article  PubMed  CAS  Google Scholar 

  • Bartold PM, Cantley MD, Haynes DR (2010) Mechanisms and control of pathologic bone loss in periodontitis. Periodontology 2000 53:55–69

    Article  PubMed  Google Scholar 

  • Beigelman A, Gunsten S, Mikols CL, Vidavsky I, Cannon CL, Brody SL, Walter MJ (2009) Azithromycin attenuates airway inflammation in a noninfectious mouse model of allergic asthma. Chest 136:498–506

    Article  PubMed  Google Scholar 

  • Birkedal-Hansen H (1993) Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res 28:500–510

    Article  PubMed  CAS  Google Scholar 

  • Blandizzi C, Malizia T, Lupetti A, Pesce D, Gabriele M, Giuca MR, Campa M, Del Tacca M, Senesi S (1999) Periodontal tissue disposition of azithromycin in patients affected by chronic inflammatory periodontal diseases. J Periodontol 70:960–966

    Article  PubMed  CAS  Google Scholar 

  • Blasi F, Mantero M, Aliberti S (2012) Antibiotics as immunomodulant agents in COPD. Curr Opin Pharmacol 12:293–299

    Article  PubMed  CAS  Google Scholar 

  • Borrell LN, Burt B, Taylor GW (2005) Prevalence and trends in periodontitis in the USA: from NHANES III to the NHANES, 1988 to 2000. J Dent Res 84:924–930

    Article  PubMed  CAS  Google Scholar 

  • Bosnar M, Kelneric Z, Munic V, Erakovic V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377

    Article  PubMed  CAS  Google Scholar 

  • Bosnar M, Bosnjak B, Cuzic S, Hrvacic B, Marjanovic N, Glojnaric I, Culic O, Parnham MJ, Erakovic Haber V (2009) Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived granulocyte-macrophage colony-stimulating factor and interleukin-1beta. J Pharmacol Exp Ther 331:104–113

    Article  PubMed  CAS  Google Scholar 

  • Burt B (2005) Position paper: epidemiology of periodontal diseases. J Periodontol 76:1406–1419

    Article  PubMed  Google Scholar 

  • Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  PubMed  CAS  Google Scholar 

  • Chico RM, Pittrof R, Greenwood B, Chandramohan D (2008) Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy. Malar J 7:255

    Article  PubMed  CAS  Google Scholar 

  • Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P (2006) Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophysiol Res Commun 350:977–982

    Article  CAS  Google Scholar 

  • Cigana C, Assael BM, Melotti P (2007) Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 51:975–981

    Article  PubMed  CAS  Google Scholar 

  • Cohen JJ, Duke RC, Fadok VA, Sellins KS (1992) Apoptosis and programmed cell death in immunity. Ann Rev Immunol 10:267–293

    Article  CAS  Google Scholar 

  • Criqui GI, Solomon C, Welch BS, Ferrando RE, Boushey HA, Balmes JR (2000) Effects of azithromycin on ozone-induced airway neutrophilia and cytokine release. Eur Respir J 15:856–862

    Article  PubMed  CAS  Google Scholar 

  • Culic O, Erakovic V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429:209–229

    Article  PubMed  CAS  Google Scholar 

  • Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z, Galovic R, Glojnaric I, Manojlovic Z, Munic V, Novak-Mircetic R, Pavicic-Beljak V, Sucic M, Veljaca M, Zanic-Grubisic T, Parnham MJ (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–289

    Article  PubMed  CAS  Google Scholar 

  • Dastoor SF, Travan S, Neiva RF, Rayburn LA, Giannobile WV, Wang HL (2007) Effect of adjunctive systemic azithromycin with periodontal surgery in the treatment of chronic periodontitis in smokers: a pilot study. J Periodontol 78:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Drisko CH (2001) Nonsurgical periodontal therapy 2000. Periodontology 25:77–88

    Article  CAS  Google Scholar 

  • Emingil G, Han B, Ozdemir G, Tervahartiala T, Vural C, Atilla G, Baylas H, Sorsa T (2012) Effect of azithromycin, as an adjunct to nonsurgical periodontal treatment, on microbiological parameters and gingival crevicular fluid biomarkers in generalized aggressive periodontitis. J Periodontal Res 47(6):729–739

    Article  PubMed  CAS  Google Scholar 

  • Feola DJ, Garvy BA, Cory TJ, Birket SE, Hoy H, Hayes D Jr, Murphy BS (2010) Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob Agents Chemother 54:2437–2447

    Article  PubMed  CAS  Google Scholar 

  • Fiese EF, Steffen SH (1990) Comparison of the acid stability of azithromycin and erythromycin. J Antimicrob Chemother 25(Suppl A):39–47

    Article  PubMed  CAS  Google Scholar 

  • Foulds G, Luke DR, Teng R, Willavize SA, Friedman H, Curatolo WJ (1996) The absence of an effect of food on the bioavailability of azithromycin administered as tablets, sachet or suspension. J Antimicrob Chemother 37(Suppl C):37–44

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Kadota J, Kawakami K, Iida K, Shirai R, Kaseda M, Kawamoto S, Kohno S (1995) Long term effect of erythromycin therapy in patients with chronic Pseudomonas aeruginosa infection. Thorax 50:1246–1252

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Wang P-L, Hosokawa Y, Shirai S, Tamura A, Hikita K, Maida T, Ochi M, Baehni PC (2004) Effect of systemically administered azithromycin in early onset aggressive periodontitis. Periodontal Practice Today 1:321–325

    Google Scholar 

  • Gao X, Ray R, Xiao Y, Ishida K, Ray P (2010) Macrolide antibiotics improve chemotactic and phagocytic capacity as well as reduce inflammation in sulfur mustard-exposed monocytes. Pulm Pharmacol Ther 23:97–106

    Article  PubMed  CAS  Google Scholar 

  • Gavilanes X, Huaux F, Meyer M, Lebecque P, Marbaix E, Lison D, Scholte B, Wallemacq P, Leal T (2009) Azithromycin fails to reduce increased expression of neutrophil-related cytokines in primary-cultured epithelial cells from cystic fibrosis mice. J Cyst Fibros 8:203–210

    Article  PubMed  CAS  Google Scholar 

  • Giamarellos-Bourboulis EJ (2008) Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents 31:12–20

    Article  PubMed  CAS  Google Scholar 

  • Gladue RP, Snider ME (1990) Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother 34:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Gladue RP, Bright GM, Isaacson RE, Newborg MF (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33:277–282

    Article  PubMed  CAS  Google Scholar 

  • Gomi K, Yashima A, Nagano T, Kanazashi M, Maeda N, Arai T (2007) Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J Periodontol 78:422–429

    Article  PubMed  CAS  Google Scholar 

  • Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, Powers JC, Luisetti M (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 25:492–499

    Article  PubMed  CAS  Google Scholar 

  • Greenstein G (1992) Periodontal response to mechanical non-surgical therapy: a review. J Periodontol 63:118–130

    Article  PubMed  CAS  Google Scholar 

  • Haas AN, de Castro GD, Moreno T, Susin C, Albandar JM, Oppermann RV, Rosing CK (2008) Azithromycin as an adjunctive treatment of aggressive periodontitis: 12-months randomized clinical trial. J Clin Periodontol 35:696–704

    Article  PubMed  CAS  Google Scholar 

  • Haas AN, Silva-Boghossian CM, Colombo AP, Susin C, Albandar JM, Oppermann RV, Rosing CK (2012) Adjunctive azithromycin in the treatment of aggressive periodontitis: microbiological findings of a 12-month randomized clinical trial. J Dent 40:556–563

    Article  PubMed  CAS  Google Scholar 

  • Haffajee AD, Torresyap G, Socransky SS (2007) Clinical changes following four different periodontal therapies for the treatment of chronic periodontitis: 1-year results. J Clin Periodontol 34:243–253

    Article  PubMed  CAS  Google Scholar 

  • Han B, Emingil G, Ozdemir G, Tervahartiala T, Vural C, Atilla G, Baylas H, Sorsa T (2012) Azithromycin as an adjunctive treatment of generalized severe chronic periodontitis: clinical, microbiological and biochemical parameters. J Periodontol 83(12):1480–1491

    Article  PubMed  CAS  Google Scholar 

  • Hanada H, Ikeda-Dantsuji Y, Naito M, Nagayama A (2003) Infection of human fibroblast-like synovial cells with Chlamydia trachomatis results in persistent infection and interleukin-6 production. Microb Pathol 34:57–63

    Article  CAS  Google Scholar 

  • Hand WL, Hand DL (2001) Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents 18:419–425

    Article  PubMed  CAS  Google Scholar 

  • Hand WL, Hand DL, Vasquez Y (2007) Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. Diabetes Res Clin Pract 76:44–50

    Article  PubMed  CAS  Google Scholar 

  • Hansen LH, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol Microbiol 31:623–631

    Article  PubMed  CAS  Google Scholar 

  • Heitz-Mayfield LJ (2009) Systemic antibiotics in periodontal therapy. Aust Dent J 54(Suppl 1):S96–S101

    Article  PubMed  Google Scholar 

  • Hillis GS, Pearson CV, Harding SA, Sutherland S, Ludlam CA, Marioni JC, Prescott RJ, Fox KA, Flapan AD (2004) Effects of a brief course of azithromycin on soluble cell adhesion molecules and markers of inflammation in survivors of an acute coronary syndrome: a double-blind, randomized, placebo-controlled study. Am Heart J 148:72–79

    Article  PubMed  CAS  Google Scholar 

  • Hirsch R (2010) Periodontal healing and bone regeneration in response to azithromycin. Aust Dent J 55:193–199

    Article  PubMed  CAS  Google Scholar 

  • Hirsch R, Deng H, Laohachai MN (2012) Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res 47:137–148

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld L, Wasserman B (1978) A long-term survey of tooth loss in 600 treated periodontal patients. J Periodontol 45:225–237

    Article  Google Scholar 

  • Ho W, Eubank T, Leblebicioglu B, Marsh C, Walters J (2010) Azithromycin decreases crevicular fluid volume and mediator content. J Dent Res 89:831–835

    Article  PubMed  CAS  Google Scholar 

  • Hodge P, Michalowicz B (2001) Genetic predisposition to periodontitis in children and young adults. Periodontol 2000 26:113–134

    Article  PubMed  CAS  Google Scholar 

  • Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HL, Klepser ME, Ernst EJ, Petzold CR, Sa’adah LM, Doern GV (2003) Influence of macrolide susceptibility on efficacies of clarithromycin and azithromycin against Streptococcus pneumoniae in a murine lung infection model. Antimicrob Agents Chemother 47:739–746

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr (−/−) mice. Antimicrob Agents Chemother 51:3677–3687

    Article  PubMed  CAS  Google Scholar 

  • Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, Iuvone T, D’Acquisto F, Di Rosa M (2000) Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292:156–163

    PubMed  CAS  Google Scholar 

  • Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H, Miyazaki Y, Hirakata Y, Mizuta Y, Kadota JI, Iglewski BH, Kohno S (2005) Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Ishimatsu Y, Kadota J, Iwashita T, Nagata T, Ishii H, Shikuwa C, Kaida H, Mukae H, Kohno S (2004) Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro. Int J Antimicrob Agents 24:247–253

    Article  PubMed  CAS  Google Scholar 

  • Ivetic Tkalcevic V, Bosnjak B, Hrvacic B, Bosnar M, Marjanovic N, Ferencic Z, Situm K, Culic O, Parnham MJ, Erakovic V (2006) Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. Eur J Pharmacol 539:131–138

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto S, Kumamoto T, Azuma E, Hirayama M, Ito M, Amano K, Ido M, Komada Y (2011) The effect of azithromycin on the maturation and function of murine bone marrow-derived dendritic cells. Clin Exp Immunol 166:385–392

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Lai PC, Walters JD (2012) Effect of gingivitis on azithromycin concentrations in gingival crevicular fluid. J Periodontol 83:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Kadir T, Izzetin FV, Cevikbas A, Johansson CB, Clark P (2000) In vitro effects of clarithromycin on human polymorphonuclear leukocyte functions. Chemotherapy 46:198–203

    Article  PubMed  CAS  Google Scholar 

  • Kadota J, Mizunoe S, Kishi K, Tokimatsu I, Nagai H, Nasu M (2005) Antibiotic-induced apoptosis in human activated peripheral lymphocytes. Int J Antimicrob Agents 25:216–220

    Article  PubMed  CAS  Google Scholar 

  • Kamemoto A, Ara T, Hattori T, Fujinami Y, Imamura Y, Wang PL (2009) Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts. Eur J Med Res 14:309–314

    Article  PubMed  CAS  Google Scholar 

  • Karlstrom A, Heston SM, Boyd KL, Tuomanen EI, McCullers JA (2011) Toll-like receptor 2 mediates fatal immunopathology in mice during treatment of secondary pneumococcal pneumonia following influenza. J Infect Dis 204:1358–1366

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Kadota J, Iida K, Fujii T, Shirai R, Matsubara Y, Kohno S (1997) Phenotypic characterization of T cells in bronchoalveolar lavage fluid (BALF) and peripheral blood of patients with diffuse panbronchiolitis; the importance of cytotoxic T cells. Clin Exp Immunol 107:410–416

    Article  PubMed  CAS  Google Scholar 

  • Kawamura-Sato K, Iinuma Y, Hasegawa T, Horii T, Yamashino T, Ohta M (2000) Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob Agents Chemother 44:2869–2872

    Article  PubMed  CAS  Google Scholar 

  • Kawashima M, Yatsunami J, Fukuno Y, Nagata M, Tominaga M, Hayashi S (2002) Induced acute lung injury. Lung 180:73–89

    PubMed  CAS  Google Scholar 

  • Khan AA, Slifer TR, Araujo FG, Remington JS (1999) Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents 11:121–132

    Google Scholar 

  • Koch CC, Esteban DJ, Chin AC, Olson ME, Read RR, Ceri H, Morck DW, Buret AG (2000) Apoptosis, oxidative metabolism and interleukin-8 production in human neutrophils exposed to azithromycin: effects of Streptococcus pneumoniae. J Antimicrob Chemother 46:19–26

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, Dumas JL, Van Delden C (2007) Ribosome protection prevents azithromycin-mediated quorum-sensing modulation and stationary-phase killing of Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:4243–4248

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, Perron GG, Buckling A, van Delden C (2010) Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathol 6:e1000883

    Article  CAS  Google Scholar 

  • Kornman KS (2008) Mapping the pathogenesis of periodontitis: a new look. J Periodontol 79:1560–1568

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Abbas A, Fausto N (2007) Robins basic pathology. Saunders, Philadelphia

    Google Scholar 

  • Kurdowska A, Noble JM, Griffith DE (2001) The effect of azithromycin and clarithromycin on ex vivo interleukin-8 (IL-8) release from whole blood and IL-8 production by human alveolar macrophages. J Antimicrob Chemother 47:867–870

    Article  PubMed  CAS  Google Scholar 

  • Kutlin A, Roblin PM, Hammerschlag MR (2002) Effect of prolonged treatment with azithromycin, clarithromycin, or levofloxacin on Chlamydia pneumoniae in a continuous-infection model. Antimicrob Agents Chemother 46:409–412

    Article  PubMed  CAS  Google Scholar 

  • Labro MT, el Benna J, Babin-Chevaye C (1989) Comparison of the in vitro effect of several macrolides on the oxidative burst of human neutrophils. J Antimicrob Chemother 24:561–572

    Article  PubMed  CAS  Google Scholar 

  • Lagrou K, Peetermans WE, Jorissen M, Verhaegen J, Van Damme J, Van Eldere J (2000) Subinhibitory concentrations of erythromycin reduce pneumococcal adherence to respiratory epithelial cells in vitro. J Antimicrob Chemother 46:717–723

    Article  PubMed  CAS  Google Scholar 

  • Lai PC, Ho W, Jain N, Walters JD (2011) Azithromycin concentrations in blood and gingival crevicular fluid after systemic administration. J Periodontol 82:1582–1586

    Article  PubMed  CAS  Google Scholar 

  • Langley JM, Halperin SA, Boucher FD, Smith B (2004) Azithromycin is as effective as and better tolerated than erythromycin estolate for the treatment of pertussis. Pediatrics 114:e96–e101

    Article  PubMed  Google Scholar 

  • Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, Lison D, Scholte BJ, Wallemacq P, Leal T (2006) Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res 7:134

    Article  PubMed  CAS  Google Scholar 

  • Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann NY Acad Sci 1143:123–150

    Article  PubMed  CAS  Google Scholar 

  • Li DQ, Zhou N, Zhang L, Ma P, Pflugfelder SC (2010) Suppressive effects of azithromycin on zymosan-induced production of proinflammatory mediators by human corneal epithelial cells. Invest Ophthalmol Vis Sci 51:5623–5629

    Article  PubMed  Google Scholar 

  • Lin SJ, Lee WJ, Liang YW, Yan DC, Cheng PJ, Kuo ML (2011) Azithromycin inhibits IL-5 production of T helper type 2 cells from asthmatic children. Int Arch Allergy Immunol 156:179–186

    Article  PubMed  CAS  Google Scholar 

  • Maezono H, Noiri Y, Asahi Y, Yamaguchi M, Yamamoto R, Izutani N, Azakami H, Ebisu S (2011) Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. Antimicrob Agents Chemother 55:5887–5892

    Article  PubMed  CAS  Google Scholar 

  • Mandell GL, Coleman E (2001) Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 45:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Marsh PD (2003) Plaque as a biofilm: pharmacological principles of drug delivery and action in the sub- and supragingival environment. Oral Dis 9(Suppl 1):16–22

    Article  PubMed  Google Scholar 

  • Mascarenhas P, Gapski R, Al-Shammari K, Hill R, Soehren S, Fenno JC, Giannobile WV, Wang HL (2005) Clinical response of azithromycin as an adjunct to non-surgical periodontal therapy in smokers. J Periodontol 76:426–436

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Mitani A, Suga T, Kamiya Y, Kikuchi T, Tanaka S, Aino M, Noguchi T (2011) Azithromycin may inhibit interleukin-8 through suppression of Rac1 and a nuclear factor-κB pathway in KB cells stimulated with lipopolysaccharide. J Periodontol 82:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • McFall WT Jr (1982) Tooth loss in 100 treated patients with periodontal disease. A long-term study. J Periodontol 53:539–549

    Article  PubMed  Google Scholar 

  • Meyer M, Huaux F, Gavilanes X, van den Brule S, Lebecque P, Lo Re S, Lison D, Scholte B, Wallemacq P, Leal T (2009) Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis. Am J Respir Cell Mol Biol 41:590–602

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Selzman CH, Shames BD, Barton HA, Johnson SM, Harken AH (2000) Chlamydia pneumoniae activates nuclear factor κB and activator protein 1 in human vascular smooth muscle and induces cellular proliferation. J Surg Res 90:76–81

    Article  PubMed  CAS  Google Scholar 

  • Mizukane R, Hirakata Y, Kaku M, Ishii Y, Furuya N, Ishida K, Koga H, Kohno S, Yamaguchi K (1994) Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 38:528–533

    Article  PubMed  CAS  Google Scholar 

  • Mizunoe S, Kadota J, Tokimatsu I, Kishi K, Nagai H, Nasu M (2004) Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL. Int Immunopharmacol 4:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Molinari G, Paglia P, Schito GC (1992) Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory concentrations of azithromycin. Eur J Clin Microbiol Infect Dis 11:469–471

    Article  PubMed  CAS  Google Scholar 

  • Molinari G, Guzman CA, Pesce A, Schito GC (1993) Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 31:681–688

    Article  PubMed  CAS  Google Scholar 

  • Murphy BS, Sundareshan V, Cory TJ, Hayes D Jr, Anstead MI, Feola DJ (2008) Azithromycin alters macrophage phenotype. J Antimicrob Chemother 61:554–560

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J (2010) A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J Immunol 184:1516–1525

    Article  PubMed  CAS  Google Scholar 

  • Norrington DW, Ruby J, Beck P, Eleazer PD (2008) Observations of biofilm growth on human dentin and potential destruction after exposure to antibiotics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:526–529

    Article  PubMed  Google Scholar 

  • Oda H, Kadota J, Kohno S, Hara K (1994) Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 106:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Ohara T, Kojio S, Taneike I, Nakagawa S, Gondaira F, Tamura Y, Gejyo F, Zhang HM, Yamamoto T (2002) Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrob Agents Chemother 46:3478–3483

    Article  PubMed  CAS  Google Scholar 

  • Ortega E, Escobar MA, de Cienfuegos GA (2002) In vitro and ex vivo effects of erythromycin A, azithromycin and josamycin on the splenic response to specific antigens and mitogens. J Antimicrob Chemother 49:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Ortega E, Escobar MA, Gaforio JJ, Algarra I, Alvarez De Cienfuegos G (2004) Modification of phagocytosis and cytokine production in peritoneal and splenic murine cells by erythromycin A, azithromycin and josamycin. J Antimicrob Chemother 53:367–370

    Article  PubMed  CAS  Google Scholar 

  • Oteo A, Herrera D, Figuero E, O’Connor A, Gonzalez I, Sanz M (2010) Azithromycin as an adjunct to scaling and root planing in the treatment of Porphyromonas gingivalis-associated periodontitis: a pilot study. J Clin Periodontol 37:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS (1997) Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 2000 14:216–248

    Article  PubMed  CAS  Google Scholar 

  • Pajukanta R (1993) In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral Microbiol Immunol 8:325–326

    Article  PubMed  CAS  Google Scholar 

  • Pajukanta R, Asikainen S, Saarela M, Alaluusua S, Jousimies-Somer H (1992) In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother 36:1241–1243

    Article  PubMed  CAS  Google Scholar 

  • Parchure N, Zouridakis EG, Kaski JC (2002) Effect of azithromycin treatment on endothelial function in patients with coronary artery disease and evidence of Chlamydia pneumoniae infection. Circulation 105:1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Parnham MJ, Culic O, Erakovic V, Munic V, Popovic-Grle S, Barisic K, Bosnar M, Brajsa K, Cepelak I, Cuzic S, Glojnaric I, Manojlovic Z, Novak-Mircetic R, Oreskovic K, Pavicic-Beljak V, Radosevic S, Sucic M (2005) Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur J Pharmacol 517:132–143

    Article  PubMed  CAS  Google Scholar 

  • Pearlman BA (1993) Long-term periodontal care: a comparative retrospective survey. J Periodontol 64:723–729

    Article  PubMed  CAS  Google Scholar 

  • Perry DK, Hand WL, Edmondson DE, Lambeth JD (1992) Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol 149:2749–2758

    PubMed  CAS  Google Scholar 

  • Pradeep AR, Sagar SV, Daisy H (2008) Clinical and microbiologic effects of subgingivally delivered 0.5 % azithromycin in the treatment of chronic periodontitis. J Periodontol 79:2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Principi N, Esposito S (1999) Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients. Drug Saf 20:25–41

    Article  PubMed  CAS  Google Scholar 

  • Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM (2012) Azithromycin and the risk of cardiovascular death. N Engl J Med 366:1881–1890

    Article  PubMed  CAS  Google Scholar 

  • Reato G, Cuffini AM, Tullio V, Mandras N, Roana J, Banche G, Foa R, Carlone NA (2004) Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. Int J Antimicrobial Agents 23:150–154

    Article  CAS  Google Scholar 

  • Ribeiro CM, Hurd H, Wu Y, Martino ME, Jones L, Brighton B, Boucher RC, O’Neal WK (2009) Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS ONE 4:e5806

    Article  PubMed  CAS  Google Scholar 

  • Rodvold KA, Gotfried MH, Danziger LH, Servi RJ (1997) Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob Agents Chemother 41:1399–1402

    PubMed  CAS  Google Scholar 

  • Sampaio E, Rocha M, Figueiredo LC, Faveri M, Duarte PM, Gomes Lira EA, Feres M (2011) Clinical and microbiological effects of azithromycin in the treatment of generalized chronic periodontitis: a randomized placebo-controlled clinical trial. J Clin Periodontol 38:838–846

    Article  PubMed  CAS  Google Scholar 

  • Schreiber F, Szewzyk U (2008) Environmentally relevant concentrations of pharmaceuticals influence the initial adhesion of bacteria. Aquat Toxicol 87:227–233

    Article  PubMed  CAS  Google Scholar 

  • Schultz MJ, Speelman P, Hack CE, Buurman WA, van Deventer SJ, van Der Poll T (2000) Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae. J Antimicrob Chemother 46:235–240

    Article  PubMed  CAS  Google Scholar 

  • Sefton AM, Maskell JP, Beighton D, Whiley A, Shain H, Foyle D, Smith SR, Smales FC, Williams JD (1996) Azithromycin in the treatment of periodontal disease. Effect on microbial flora. J Clin Periodontol 23:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Semaan HB, Gurbel PA, Anderson JL, Muhlestein JB, Carlquist JF, Horne BD, Serebruany VL (2000) The effect of chronic azithromycin therapy on soluble endothelium-derived adhesion molecules in patients with coronary artery disease. J Cardiovasc Pharmacol 36:533–537

    Article  PubMed  CAS  Google Scholar 

  • Shinkai M, Foster GH, Rubin BK (2006) Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 290:L75–L85

    Article  PubMed  CAS  Google Scholar 

  • Shinkai M, Henke MO, Rubin BK (2008) Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther 117:393–405

    Article  PubMed  CAS  Google Scholar 

  • Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Hoiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663

    Article  PubMed  CAS  Google Scholar 

  • Slots J, Ting M (2002) Systemic antibiotics in the treatment of periodontal disease. Periodontol 2000 28:106–176

    Article  PubMed  Google Scholar 

  • Smith SR, Foyle DM, Daniels J, Joyston-Bechal S, Smales FC, Sefton A, Williams J (2002) A double-blind placebo-controlled trial of azithromycin as an adjunct to non-surgical treatment of periodontitis in adults: clinical results. J Clin Periodontol 29:54–61

    Article  PubMed  CAS  Google Scholar 

  • Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55

    Article  PubMed  Google Scholar 

  • Squier MK, Sehnert AJ, Cohen JJ (1995) Apoptosis in leukocytes. J Leukoc Biol 57:2–10

    PubMed  CAS  Google Scholar 

  • Starner TD, Shrout JD, Parsek MR, Appelbaum PC, Kim G (2008) Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and diminish established biofilms. Antimicrob Agents Chemother 52:137–145

    Article  PubMed  CAS  Google Scholar 

  • Stockley RA (2006) Neutrophilic inflammation: “Don’t you go to pieces on me!”. Eur Respir J 28:257–258

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Shirai R, Mukae H, Ishimoto H, Nagata T, Sakamoto N, Ishii H, Nakayama S, Yanagihara K, Mizuta Y, Kohno S (2007) Differing effects of clarithromycin and azithromycin on cytokine production by murine dendritic cells. Clin Exp Immunol 147:540–546

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Ara T, Imamura Y, Fujii T, Wang PL (2008) The effects of antibiotics on in vitro biofilm model of periodontal disease. Eur J Med Res 13:439–445

    PubMed  CAS  Google Scholar 

  • Tateda K, Ishii Y, Matsumoto T, Kobayashi T, Miyazaki S, Yamaguchi K (2000) Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. J Infect Chemother 6:1–7

    Article  PubMed  CAS  Google Scholar 

  • Tateda K, Comte R, Pechere JC, Kahler T, Yamaguchi K, Van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Tatnell PJ, Russell NJ, Gacesa P (1994) GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology 140(Pt 7):1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Tomazic J, Kotnik V, Wraber B (1993) In vivo administration of azithromycin affects lymphocyte activity in vitro. Antimicrob Agents Chemother 37:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Rodriguez ML, Young KS, Deng JC, Thannickal VJ, Tateda K, Hershenson MB, Standiford TJ (2004) Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med 170:1331–1339

    Article  PubMed  Google Scholar 

  • Tsai WC, Hershenson MB, Zhou Y, Sajjan U (2009) Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res 58:491–501

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke TE, Lester MA, Shapira L (1993) The role of the host response in periodontal disease progression: implications for future treatment strategies. J Periodontol 64:792–806

    Article  PubMed  Google Scholar 

  • Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S, Van Raemdonck DE, Verleden GM (2007) Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 7:76–82

    Article  PubMed  CAS  Google Scholar 

  • Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE (2006) Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 174:566–570

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  PubMed  CAS  Google Scholar 

  • Wagner T, Soong G, Sokol S, Saiman L, Prince A (2005) Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest 128:912–919

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen L (2004) T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol 1:37–42

    PubMed  Google Scholar 

  • Wang JH, Lee SH, Kwon HJ, Jang YJ (2010) Clarithromycin inhibits rhinovirus-induced bacterial adhesions to nasal epithelial cells. Laryngoscope 120:193–199

    Article  PubMed  CAS  Google Scholar 

  • Wilms EB, Touw DJ, Heijerman HG (2006) Pharmacokinetics of azithromycin in plasma blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit 28:219–225

    Article  PubMed  CAS  Google Scholar 

  • Winkel EG, Van Winkelhoff AJ, Timmerman MF, Van der Velden U, Van der Weijden GA (2001) Amoxicillin plus metronidazole in the treatment of adult periodontitis patients. A double-blind placebo-controlled study. J Clin Periodontol 28:296–305

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Lin JH, Bao K, Li PF, Zhang WG (2009) In vitro effects of erythromycin on RANKL and nuclear factor-κB by human TNF-alpha stimulated Jurkat cells. Int Immunopharmacol 9:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D, Sato M, Igarashi A, Kubota I (2009) Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci 5:667–678

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara K, Izumikawa K, Higa F, Tateyama M, Tokimatsu I, Hiramatsu K, Fujita J, Kadota J, Kohno S (2009a) Efficacy of azithromycin in the treatment of community-acquired pneumonia, including patients with macrolide-resistant Streptococcus pneumoniae infection. Intern Med 48:527–535

    Article  PubMed  Google Scholar 

  • Yanagihara K, Izumikawa K, Higa F, Tateyama M, Tokimatsu I, Hiramatsu K, Fujita J, Kadota JI, Kohno S (2009b) Efficacy of azithromycin in the treatment of community-acquired pneumonia, including patients with macrolide-resistant Streptococcus pneumoniae infection. Intern Med 48:527–535

    Article  PubMed  Google Scholar 

  • Yashima A, Gomi K, Maeda N, Arai T (2009) One-stage full-mouth versus partial-mouth scaling and root planing during the effective half-life of systemically administered azithromycin. J Periodontol 80:1406–1413

    Article  PubMed  CAS  Google Scholar 

  • Yek EC, Cintan S, Topcuoglu N, Kulekci G, Issever H, Kantarci A (2010) Efficacy of amoxicillin and metronidazole combination for the management of generalized aggressive periodontitis. J Periodontol 81:964–974

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sunazuka T, Nagai K, Sugawara A, Cho A, Nagamitsu T, Harigaya Y, Otoguro K, Akagawa KS, Omura S (2005) Macrolides with promotive activity of monocyte to macrophage differentiation. J Antibiot (Tokyo) 58:79–81

    Article  CAS  Google Scholar 

  • Zuckerman JM, Qamar F, Bono BR (2009) Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 23:997–1026

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bartold.

Additional information

The authors would like to use this opportunity to express their respect for Professor Barrie Vernon-Roberts. PMB, RSH and DRH had the opportunity to study and train under his guidance and now 25 years later another round of students (AdB and SG) have had the opportunity to be influenced by the legacy of BVR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartold, P.M., du Bois, A.H., Gannon, S. et al. Antibacterial and immunomodulatory properties of azithromycin treatment implications for periodontitis. Inflammopharmacol 21, 321–338 (2013). https://doi.org/10.1007/s10787-012-0165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-012-0165-1

Keywords

Navigation