Skip to main content
Log in

Performance Analysis of the Hardware-Efficient Quantum Search Algorithm

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This article explores the Hardware-Efficient Quantum Search Algorithm and compares it with other well-known counterparts. Escalating the count of qubits may elevate susceptibility to errors, particularly in iterative algorithms such as Grover’s. Conversely, Noisy-Intermediate-Scale-Quantum (NISQ) computers encounter limitation in the number of gates necessary for excecution of any quantum queries. Thus, we utilize hardware-efficient quantum search algorithm for further investigation due to its optimized circuit depth. Moreover, the Qiskit library and Matlab are used for validation of the analysis. Furthermore, the noise effects, encompassing phase-damping (PD) and amplitude-damping (AD) noises, are explored to present a comparative analsysis of various search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The codes that support the plots within the paper are publicly available on a Github repository at: https://github.com/paymanprime/QSearch_HE.git

References

  1. Wang, Y., Krstic, P.S.: Prospect of using Grover’s search in the noisy-intermediate-scale quantum-computer era. Phys. Rev. A. 102, 042609 (2020). https://doi.org/10.1103/PHYSREVA.102.042609/FIGURES/7/MEDIUM

    Article  ADS  Google Scholar 

  2. Preskill, J.: Quantum {C}omputing in the {NISQ} era and beyond. Quantum. 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  3. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.K., Sim, S., Kwek, L.C., Aspuru-Guzik, A.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). https://doi.org/10.1103/REVMODPHYS.94.015004/FIGURES/7/MEDIUM

    Article  ADS  MathSciNet  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Kato, G.: Grover-algorithm-like operator using only single-qubit gates. Phys. Rev. A - At. Mol. Opt. Phys. 72, 032319 (2005). https://doi.org/10.1103/PHYSREVA.72.032319/FIGURES/1/MEDIUM

    Article  ADS  Google Scholar 

  6. Zhang, K., Korepin, V.E.: Depth optimization of quantum search algorithms beyond Grover’s algorithm. Phys. Rev. A. 101, 032346 (2020). https://doi.org/10.1103/PHYSREVA.101.032346/FIGURES/2/MEDIUM

    Article  ADS  MathSciNet  Google Scholar 

  7. Jiang, Z., Rieffel, E.G., Wang, Z.: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A. 95, 062317 (2017). https://doi.org/10.1103/PHYSREVA.95.062317/FIGURES/4/MEDIUM

    Article  ADS  Google Scholar 

  8. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996)

    Book  Google Scholar 

  9. Hu, C.R.: Family of sure-success quantum algorithms for solving a generalized Grover search problem. Phys. Rev. A. 66, 042301 (2002). https://doi.org/10.1103/PhysRevA.66.042301

    Article  ADS  Google Scholar 

  10. Zhang, K., Korepin, V.: Quantum partial search for uneven distribution of multiple target items. Quantum Inf. Process. 176(17), 1–20 (2018). https://doi.org/10.1007/S11128-018-1907-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Korepin, V.E., Grover, L.K.: Simple Algorithm for Partial Quantum Search. Quantum Inf. Process. 51(5), 5–10 (2006). https://doi.org/10.1007/S11128-005-0004-Z

    Article  MathSciNet  MATH  Google Scholar 

  12. Korepin, V.E., Liao, J.: Quest for Fast Partial Search Algorithm. Quantum Inf. Process. 53(5), 209–226 (2006). https://doi.org/10.1007/S11128-006-0024-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Korepin, V.: Optimization of Partial Search. (2005). https://iopscience.iop.org/article/10.1088/0305-4470/38/44/L02 

  14. Liu, J., Zhou, H.: Hardware Efficient Quantum Search Algorithm. (2021). https://arxiv.org/abs/2103.14196

  15. Zhang, K., Rao, P., Yu, K., Lim, H., Korepin, V.: Implementation of efficient quantum search algorithms on NISQ computers. Quantum Inf. Process 20, (2021). https://doi.org/10.1007/S11128-021-03165-2

  16. Morley, J.G., Chancellor, N., Bose, S., Kendon, V.: Quantum search with hybrid adiabatic-quantum-walk algorithms and realistic noise. Phys. Rev. A. 99, 022339 (2019). https://doi.org/10.1103/PHYSREVA.99.022339/FIGURES/19/MEDIUM

    Article  ADS  Google Scholar 

  17. Gawron, P., Klamka, J., Winiarczyk, R.: Noise effects in the quantum search algorithm from the viewpoint of computational complexity. Int. J. Appl. Math. Comput. Sci. 22, 493–499 (2012). https://doi.org/10.2478/v10006-012-0037-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Salas, P.J.: Noise effect on Grover algorithm. Eur. Phys. J. D. 46, 365–373 (2008). https://doi.org/10.1140/epjd/e2007-00295-1

    Article  ADS  Google Scholar 

  19. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-Hernández, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D.L.P., Torre, E.D. La, Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez, D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: An Open-source Framework for Quantum Computing, https://doi.org/10.5281/zenodo.2562111, (2019)

  20. Ahmadkhaniha, A., Mafi, Y., Kazemikhah, P.: Performance Analysis of the Partitioned Hardware-Efficient Quantum Search Algorithm. https://github.com/paymanprime/QSearch_HE.git. Accessed Jun 2023.

  21. Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M.: Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019). https://doi.org/10.1063/1.5088164

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Armin Ahmadkhaniha: Conceptualization, Implementation, Methodology, Investigation, Writing initial Draft. Yousef Mafi: Methodology, Investigation, Noise Analysis. Payman Kazemikhah: Implementation, Validation, Literature survey, Writing - editing, Data Curation. Hossein Aghababa: Conceptualization, Project Administration, Resources, Supervision, Writing – Review & Editing. Masoud Barati: Investigation, Validation, Literature survey, Supervision. Mohammadreza Kolahdouz: Investigation, Literature survey, Supervision.

Corresponding author

Correspondence to Hossein Aghababa.

Ethics declarations

Ethical Approval

The authors ethically approve material of the paper. Authors have been informed and consent regarding the submission of the article. No human/animal has participated in this research.

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Eigenvectors of Gd and Gq − d are given in Eqs. 9 and 12, respectively. Hardware efficient basis sets are evaluated by considering these equations as given in Eqs. 24 and 25.

$${\displaystyle \begin{array}{l}\begin{array}{l}\left|v\right\rangle =\frac{1}{\sqrt{2}}\left(\left|{\psi}_d^{+}\right\rangle +\left|{\psi}_d^{-}\right\rangle \right)\\ {}\left|n{v}_d\right\rangle =\frac{-i}{\sqrt{2}}\left(\left|{\psi}_d^{+}\right\rangle -\left|{\psi}_d^{-}\right\rangle \right)\end{array}\\ {}\left|n{v}_{q-d}\right\rangle =\sin \left(\alpha \right)\left|{\psi}_d^0\right\rangle +\cos \left(\alpha \right)\left|{\psi}_d^1\right\rangle \\ {}\left|o\right\rangle =\cos \left(\alpha \right)\left|{\psi}_d^0\right\rangle -\sin \left(\alpha \right)\left|{\psi}_d^1\right\rangle \end{array}}$$
(24)
$${\displaystyle \begin{array}{l}\begin{array}{l}\left|v\right\rangle =\frac{1}{\sqrt{2}}\left(\left|{\psi}_{q-d}^{+}\right\rangle +\left|{\psi}_{q-d}^{-}\right\rangle \right)\\ {}\left|n{v}_d\right\rangle =\sin \left(\beta \right)\left|{\psi}_{q-d}^0\right\rangle +\cos \left(\beta \right)\left|{\psi}_{q-d}^1\right\rangle \end{array}\\ {}\left|n{v}_{q-d}\right\rangle =\frac{i}{\sqrt{2}}\left(\left|{\psi}_{q-d}^{+}\right\rangle -\left|{\psi}_{q-d}^{-}\right\rangle \right)\\ {}\left|o\right\rangle =\cos \left(\beta \right)\left|{\psi}_{q-d}^0\right\rangle -\sin \left(\beta \right)\left|{\psi}_{q-d}^1\right\rangle \end{array}}$$
(25)

Appendix B

GRK Partial search algorithm is another search algorithm employed in this study to compare its results with the Grover and the Hardware efficient algorithms. Figure 9 shows the quantum circuit considered for investigations in this study. One can use this algorithm to find the output with fewer queries (oracle complexity of the Partial search algorithm is \(O\left(\sqrt{N}-\sqrt{d}\right)\)).

Fig. 9
figure 9

First two iterations of the 4-qubit Partial search algorithm

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadkhaniha, A., Mafi, Y., Kazemikhah, P. et al. Performance Analysis of the Hardware-Efficient Quantum Search Algorithm. Int J Theor Phys 62, 168 (2023). https://doi.org/10.1007/s10773-023-05424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05424-7

Keywords

Navigation