Skip to main content
Log in

Phase Control of Electromagnetically Induced Phase Grating in a Four-Level Inverted Quantum System with Closed-Loop Configuration

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigated the electromagnetically induced phase grating in a four-level quantum system with closed loop configuration via relative phase between applied fields. We found that the diffraction intensity can be adjusted via intensities and relative phase of applied lights. We also studied separately the diffraction patterns of amplitude and phase modulations of the probe light by controlling the intensity of cycling field. We found that the probe energy can transfer from zero order to high orders of diffraction when the phase modulation of the probe light becomes important. This study may be used for application in novel photonic devices in future quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, R., Wang, X.-B.: Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium. Phys. Rev. A. 94, 063856 (2016)

    Article  ADS  Google Scholar 

  2. Schumacher, B.: Quantum coding. Phys. Rev. A. 51, 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A. 49, 1473–1476 (1994)

    Article  ADS  Google Scholar 

  4. Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A. 71, 053820 (2005)

    Article  ADS  Google Scholar 

  5. Wang, Z.: Optical bistability and multistability via quantum interference in an Er3+−doped optical fiber. J. Lumin. 131, 2404–2408 (2011)

    Article  Google Scholar 

  6. Sahrai, M., Asadpour, S.H., Sadighi-Bonabi, R.: Optical bistability via quantum interference from incoherent pumping and spontaneous emission. J. Lumin. 131, 2395–2399 (2011)

    Article  Google Scholar 

  7. Li, J.-H., Lü, X.-Y., Luo, J.-M., Huang, Q.-J.: Optical bistability and multistability via atomic coherence in anN-type atomic medium. Phys. Rev. A. 74, 035801 (2006)

    Article  ADS  Google Scholar 

  8. Wang, Z., Yu, B., Zhen, S., Wu, X.: Large refractive index without absorption via quantum interference in a semiconductor quantum well. J. Lumin. 134, 272–276 (2013)

    Article  Google Scholar 

  9. Asadpour, S.H., Hamedi, H.R., Soleimani, H.R.: Slow light propagation and bistable switching in a graphene under an external magnetic field. Laser Phys. Lett. 12, 045202 (2015)

    Article  ADS  Google Scholar 

  10. Panahi, M., Solookinejad, G., Sangachin, E.A., Asadpour, S.H.: Long wavelength superluminal pulse propagation in a defect slab doped with GaAs/AlGaAs multiple quantum well nanostructure. Modern Physics Letters B. 29, 1550216 (2015)

    Article  ADS  Google Scholar 

  11. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  12. Jamshidnejad, M., Asadi Amirabadi, E., Miraboutalebi, S., Asadpour, S.H.: Enhancement of optical delay in a monolayer Graphene system under an external magnetic field. J. Nanoelectron. Optoelectron. 11, 762–768 (2016)

    Article  Google Scholar 

  13. Asadpour, S.H., Hamedi, H.R., Jafari, M.: Enhancement of Goos–Hänchen shift due to a Rydberg state. Appl. Opt. 57, 4013–4019 (2018)

    Article  ADS  Google Scholar 

  14. Asadpour, S.H., Panahpour, A., Jafari, M.: Phase-dependent electromagnetically induced grating in a four-level quantum system near a plasmonic nanostructure. EPJ Plus. 133, 411 (2018)

    Google Scholar 

  15. Solookinejad, G., Jabbari, M., Nafar, M., Ahmadi, E., Asadpour, S.: Incoherent control of optical bistability and multistability in a hybrid system: metallic nanoparticle-quantum dot nanostructure. J. Appl. Phys. 124, 063102 (2018)

    Article  ADS  Google Scholar 

  16. Solookinejad, G., Jabbari, M., Nafar, M., Ahmadi Sangachin, E., Asadpour, S.H.: Theoretical investigation of optical Bistability and multistability via spontaneously generated coherence in four-level Rydberg atoms. Int. J. Theor. Phys. 58, 1359–1368 (2019)

    Article  Google Scholar 

  17. Wu, Y., Yang, X.: Four-wave mixing in molecular magnets via electromagnetically induced transparency. Phys. Rev. B. 76, 054425 (2007)

    Article  ADS  Google Scholar 

  18. Wu, Y.: Matched soliton pairs of four-wave mixing in molecular magnets. J. Appl. Phys. 103, 104903 (2008)

    Article  ADS  Google Scholar 

  19. Ling, H.Y., Li, Y.-Q., Xiao, M.: Electromagnetically induced grating: homogeneously broadened medium. Phys. Rev. A. 57, 1338–1344 (1998)

    Article  ADS  Google Scholar 

  20. de Araujo, L.E.: Electromagnetically induced phase grating. Opt. Lett. 35, 977–979 (2010)

    Article  ADS  Google Scholar 

  21. Liu, Z.-Z., Chen, Y.-Y., Yuan, J.-Y., Wan, R.-G.: Two-dimensional electromagnetically induced grating via nonlinear modulation in a five-level atomic system. Opt. Commun. 402, 545–550 (2017)

    Article  ADS  Google Scholar 

  22. Yu-Yuan, C., Zhuan-Zhuan, L., Ren-Gang, W.: Electromagnetically induced 2D grating via refractive index enhancement in a far-off resonant system. Laser Phys. Lett. 14, 075202 (2017)

    Article  ADS  Google Scholar 

  23. Shui, T., Yang, W.-X., Liu, S., Li, L., Zhu, Z.: Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime. Phys. Rev. A. 97, 033819 (2018)

    Article  ADS  Google Scholar 

  24. Tian, S.C., Wan, R.G., Wang, L.J., Shu, S.L., Lu, H.Y., Zhang, X., Tong, C.Z., Feng, J.L., Xiao, M., Wang, L.J.: Asymmetric light diffraction of two-dimensional electromagnetically induced grating with PT symmetry in asymmetric double quantum wells. Opt. Express. 26, 32918–32930 (2018)

    Article  ADS  Google Scholar 

  25. Vafafard, A., Mahmoudi, M.: Switching from electromagnetically induced absorption grating to electromagnetically induced phase grating in a closed-loop atomic system. Appl. Opt. 54, 10613–10617 (2015)

    Article  ADS  Google Scholar 

  26. Cerboneschi, E., Arimondo, E.: Transparency and dressing for optical pulse pairs through a double- lambda absorbing medium. Phys. Rev. A. 52, R1823–R1826 (1995)

    Article  ADS  Google Scholar 

  27. Shui, T., Li, L., Wang, X., Yang, W.X.: One- and two-dimensional electromagnetically induced gratings in an Er(3+) - doped yttrium aluminum garnet crystal. Sci. Rep. 10, 4019 (2020)

    Article  ADS  Google Scholar 

  28. Abbas, M., Khurshid, A., Hussain, I.: Ziauddin, investigation of P T- and P T-antisymmetry in two dimensional (2D) optical lattices. Opt. Express. 28, 8003–8015 (2020)

    Article  ADS  Google Scholar 

  29. Hang, C., Li, W., Huang, G.: Nonlinear light diffraction by electromagnetically induced gratings with PT symmetry in a Rydberg atomic gas. Phys. Rev. A. 100, 043807 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Cheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J. Phase Control of Electromagnetically Induced Phase Grating in a Four-Level Inverted Quantum System with Closed-Loop Configuration. Int J Theor Phys 60, 2745–2752 (2021). https://doi.org/10.1007/s10773-021-04860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04860-7

Keywords

Navigation