Skip to main content
Log in

MDS Constacyclic Codes of Prime Power Lengths Over Finite Fields and Construction of Quantum MDS Codes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

If we fix the code length n and dimension k, maximum distance separable (briefly, MDS) codes form an important class of codes because the class of MDS codes has the greatest error-correcting and detecting capabilities. In this paper, we establish all MDS constacyclic codes of length ps over \(\mathbb {F}_{p^{m}}\). We also give some examples of MDS constacyclic codes over finite fields. As an application, we construct all quantum MDS codes from repeated-root codes of prime power lengths over finite fields using the CSS and Hermitian constructions. We provide all quantum MDS codes constructed from dual codes of repeated-root codes of prime power lengths over finite fields using the Hermitian construction. They are new in the sense that their parameters are different from all the previous constructions. Moreover, some of them have larger Hamming distances than the well known quantum error-correcting codes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory. 47, 3065–3072 (2001)

    MATH  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A. 54, 3824 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Berlekamp, E.R.: Negacyclic codes for the Lee metric. In: Proceedings of the Conference on Combinatorial Mathematics and Its Application, Chapel Hill, pp 298–316 (1968)

  4. Berlekamp, E.R: Algebraic Coding Theory, revised 1984 edition. Aegean Park Press, Laguna Hills (1984)

    Google Scholar 

  5. Berman, S.D.: Semisimple cyclic and Abelian codes. II. Kibernetika (Kiev) 3, 17–23 (1967). (Russian). English translation: Cybernetics 3, 17–23 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Bush, K.A.: Orthogonal arrays of index unity. Ann. Math. Statistics 23, 426–434 (1952)

    MathSciNet  MATH  Google Scholar 

  7. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1106 (1996)

    ADS  Google Scholar 

  8. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Gao, J., Sriboonchitta, S.: Constacyclic codes of length nps over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). Adv. Math. Commun. 12, 231–262 (2018)

    MathSciNet  Google Scholar 

  10. Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Gao, J., Sriboonchitta, S.: A class of repeated-root constacyclic codes over \(\mathbb {F}_{p^{m}} [u]/\langle u^{e}\rangle \) of Type 2. Finite Fields Appl., 238–267 (2019)

  11. Cao, Y., Cao, Y., Dinh, H.Q., Jitman, S.: An explicit representation and enumeration for self-dual cyclic codes over \(\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}\) of length 2s. Discrete Math. 342, 2077–2091 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Gao, J., Sriboonchitta, S.: A class of linear codes of length 2 over fnite chain rings. J Algebra Appl 19 (2050103), 1–15 (2020)

    MATH  Google Scholar 

  13. Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Ma, F.: Construction and enumeration for self-dual cyclic codes of even length over \(\mathbb {F}_{2^{m}} + u\mathbb {F}_{2^{m}}\). Finite Fields Appl. 61. (in press) (2020)

  14. Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Ma, F.: On matrix-product structure of repeatedroot constacyclic codes over fnite felds. Discrete Math. 343, 111768 (2020). (in press)

    MathSciNet  MATH  Google Scholar 

  15. Cao, Y., Cao, Y., Dinh, H.Q., Bandi, R., Fu, F.: An explicit representation and enumeration for negacyclic codes of length 2kn over \(\mathbb Z_{4}+u\mathbb Z_{4}\). Adv. Math. Commun. (in press) (2020)

  16. Cao, Y., Cao, Y., Dinh, H.Q., Bag, T., Yamaka, W.: Explicit representation and enumeration of repeated-root δ2 + αu2-constacyclic codes over \(\mathbb {F}_{2^{m}}[u]/\langle u^{2{\lambda }}\). IEEE Access 8, 55550–55562 (2020)

    Google Scholar 

  17. Cao, Y., Cao, Y., Dinh, H.Q., Jitman, S.: An efcient method to construct self-dual cyclic codes of length ps over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). Discrete Math. 343, 111868 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Cleve, R., Gottesman, D.: Efficient computations of encodings for quantum error correction. Phys. Rev. A. 56, 76 (1997)

    ADS  Google Scholar 

  19. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory 61, 1474–1478 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Denes, J., Keedwell, A.D.: Latin Squares and Their Applications. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14, 22–40 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Dinh, H.Q.: Constacyclic codes of length ps over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). J. Algebra 324, 940–950 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Dinh, H.Q.: Repeated-root constacyclic codes of length 2ps. Finite Fields Appl. 18, 133–143 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Dinh, H.Q.: On repeated-root constacyclic codes of length 4ps. Asian Eur. J. Math 6, 1–25 (2013)

    Google Scholar 

  25. Dinh, H.Q.: Structure of repeated-root constacyclic codes of length 3ps and their duals. Discrete Math. 313, 983–991 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Dinh, H.Q.: Repeated-root cyclic and negacyclic codes of length 6ps. Contemp. Math. 609, 69–87 (2014)

    MATH  Google Scholar 

  27. El-Khamy, M., McEliece, R.J.: The partition weight enumerator of MDS codes and its applications. In: Proceedings of the International Symposium on Information Theory(ISIT), pp 926–930 (2005)

  28. Golomb, S.W., Posner, E.C.: Rook domains, Latin squares, affine planes, and error-distributing codes. IEEE Trans. Inf. Theory 10, 196–208 (1964)

    MathSciNet  MATH  Google Scholar 

  29. Gottesman, D.: Stabilizer Codes and Quantum Error Correction PhD Thesis (Caltech) (1997)

  30. Grassl, M., Beth, T., Rȯtteler, M.: On optimal quantum codes. Int. J. Quantum Inform. 2, 757–766 (2004)

    Google Scholar 

  31. Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum codes. In: Proceedings 2002 IEEE International Symposium on Information Theory, p 45 (2002)

  32. Grassl, M., Beth, T., Rȯtteler, M.: On optimal quantum codes. Int. J. Quantum Inform. 2, 757–766 (2004)

    Google Scholar 

  33. Grassl, M., Beth, T., Geiselmann, W.: Quantum Reed–Solomon Codes, AAECC-13, Honolulu, HI, USA (1999)

  34. Grassl, M., Beth, T.: Quantum BCH codes. In: Proceedings X. International Symposium on Theoretical Electrical Engineering, pp 207–212 (1999)

  35. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, available online at http://www.codetables.de. accessed 2020-06-20

  36. Guardia, G.G.L.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331–1–042331-11 (2009)

    Google Scholar 

  37. Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.: Graphical nonbinary quantum error-correcting codes. Phys. Rev. A 78, 1–11 (2008)

    Google Scholar 

  38. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84, 463–471 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inform. Theory 60, 2921–2925 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Joshi, D.D.: A note on upper bounds for minimum distance codes. Inf. Control. 3, 289–295 (1958)

    MathSciNet  MATH  Google Scholar 

  42. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 2, 1193–1197 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Kai, X., Zhu, S., Li, P.: A construction of new MDS Symbol-Pair codes. IEEE Trans. Inf. Theory 11, 5828–5834 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)

    MathSciNet  ADS  Google Scholar 

  45. Knill, E., Laflamme, R.: A theory of quantum Error-Correcting codes. Phys. Rev. Lett. 84, 2525 (2000)

    MathSciNet  MATH  ADS  Google Scholar 

  46. Komamiya, Y.: Application of logical mathematics to information theory. In: Proceedings of the Third Japan National Congress for Applied Mechanics, pp 437–442 (1953)

  47. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    ADS  Google Scholar 

  48. Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distanceseparable codes. Phys. Rev. A 77, 1–4 (2008)

    Google Scholar 

  49. Liu, Y., Shi, M., Dinh, H.Q., Sriboonchitta, S.: Repeated-root constacyclic codes of length 3lmps. Adv. Math. Comm. (to appear) (2019)

  50. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 10th Impression. North-Holland, Amsterdam (1998)

    Google Scholar 

  51. Maneri, C., Silverman, R.: A combinatorial problem with applications to geometry. J. Comb. Theory Ser. A 11, 118–121 (1966)

    MathSciNet  MATH  Google Scholar 

  52. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inform. Theory 19, 101–110 (1973)

    MathSciNet  MATH  Google Scholar 

  53. Pless, V., Huffman, W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  54. Prange, E.: Cyclic Error-Correcting Codes in Two Symbols. TN-57-103 (1957)

  55. collab=E.M: Rains,“quantum weight Enumerators. IEEE Trans. Inform. Theory 4, 1388–1394 (1998)

    Google Scholar 

  56. Roth, R.M., Seroussi, G.: On cyclic MDS codes of length q over GF(q). IEEE Trans. Inform. Theory 32, 284–285 (1986)

    MathSciNet  MATH  Google Scholar 

  57. Roman, S.: Coding and information theory, GTM, 134, Springer-Verlag ISBN 0-387-97812-7 (1992)

  58. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    ADS  Google Scholar 

  59. Schlingemann, D.: Stabilizer codes can be realized as graph codes. Quantum Inf. Comput. 2, 307–323 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52, 2493 (1995)

    ADS  Google Scholar 

  61. Silverman, R.: A metrization for power-sets with applications to combinatorial analysis. Canad. J. Math. 12, 158–176 (1960)

    MathSciNet  MATH  Google Scholar 

  62. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  63. Tolhuizen, L.: On Maximum Distance Separable codes over alphabets of arbitrary size. In: Proceedings of the International Symposium on Information Theory (ISIT), p 431 (1994)

  64. van Lint, J.H.: Repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 343–345 (1991)

    MathSciNet  MATH  Google Scholar 

  65. Zhou, X., Song, L., Zhang, Y.: Physical layer security in wireless communications. CRC Press, Boca Raton (2013)

Download references

Acknowledgement

This work was supported by the Ministry of Education and Training of Vietnam under Grant No. B2019-TNA-02.T. H.Q. Dinh and R. Tansuchat are grateful to the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bac T. Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., ElDin, R.T., Nguyen, B.T. et al. MDS Constacyclic Codes of Prime Power Lengths Over Finite Fields and Construction of Quantum MDS Codes. Int J Theor Phys 59, 3043–3078 (2020). https://doi.org/10.1007/s10773-020-04524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04524-y

Keywords

Navigation