Skip to main content
Log in

Dynamics and Protection of the Relative Entropy of Coherence via Additional Non-interacting Qubits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analytically study the dynamical behavior of the quantum coherence of a single-qubit coupled to a bosonic reservoir at zero temperature via plugging additional non-interacting qubits into the reservoir in both Markovian and non-Markovian regimes. The influences of detuning, memory effects and number of additional qubits on the dynamics of the quantum coherence are considered. It is found that, via increasing the number of the additional qubits in the reservoir, the quantum coherence can be preserved. Moreover, the method based on the combination of larger effective detuning, the stronger non-Markovian effects and the more number of additional qubits, can more effectively prevent the loss of the quantum coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  5. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)

    Article  ADS  Google Scholar 

  6. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  7. Lloyd, S.: Quantum coherence in biological systems. J. Phys.: Conf. Ser. 302, 012037 (2011)

    Google Scholar 

  8. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  9. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)

    Article  ADS  Google Scholar 

  10. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  11. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  Google Scholar 

  12. Misra, A., Singh, U., Bhattacharya, S., Pati, A.K.: Energy cost of creating quantum coherence. Phys. Rev. A 93, 052335 (2016)

    Article  ADS  Google Scholar 

  13. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  15. Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)

    Article  Google Scholar 

  16. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  17. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  18. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  20. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  21. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  22. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  23. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  25. Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  26. Hu, X.Y., Fan, H.: Extracting quantum coherence via steering. Sci. Rep. 6, 34380 (2016)

    Article  ADS  Google Scholar 

  27. Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)

    Article  ADS  Google Scholar 

  28. Hu, X.Y.: Channels that do not generate coherence. Phys. Rev. A 94, 012326 (2016)

    Article  ADS  Google Scholar 

  29. Liu, Z.W., Hu, X.Y., Lloyd, S.: Resource destroying maps. Phys. Rev. Lett. 118, 060502 (2017)

    Article  ADS  Google Scholar 

  30. Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv:1506.08186 (2015)

  31. Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546–550 (2000)

    Article  ADS  Google Scholar 

  32. Nourmandipour, A., Tavassoly, M.K., Rafiee, M.: Dynamics and protection of entanglement in n-qubit systems within Markovian and non-Markovian environments. Phys. Rev. A 93, 022327 (2016)

    Article  ADS  Google Scholar 

  33. Ba An, N., Kim, J., Kim, K.: Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity. Phys. Rev. A 82, 032316 (2010)

    Article  ADS  Google Scholar 

  34. Xiao, X., Li, Y., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in non-Markovian regime. J. Phys. B: At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  35. Bellomo, B., Lo Franco, R., Compagno, G.: Non-markovian effects on the dynamics of Entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  36. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  37. Behzadi, N., Ahansaz, B., Ektesabi, A., Faizi, E.: Controlling speedup in open quantum systems through manipulation of system-reservoir bound states. Phys. Rev. A 95, 052121 (2017)

    Article  ADS  MATH  Google Scholar 

  38. Behzadi, N., Ahansaz, B., Faizi, E.: Quantum coherence and entanglement preservation in Markovian and non-Markovian dynamics via additional qubits. Eur. Phys. J. D 71, 280 (2017)

    Article  ADS  Google Scholar 

  39. Ba An, N., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A 84, 022329 (2011)

    Article  ADS  Google Scholar 

  40. Ba An, N.: Protecting entanglement of atoms stored in a common nonperfect cavity without measurements. Phys. Lett. A 377, 2520–2523 (2013)

    Article  ADS  MATH  Google Scholar 

  41. Flores, M.M., Galapon, E.A.: Two qubit entanglement preservation through the addition of qubits. Ann. Phys. 354, 21–30 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Natural Science Foundation of Hunan Province (Grant No. 2016JJ2045), Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1411) and Hunan Provincial Department of Education Natural Science Foundation General Project (Grant No. 16C0469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-you Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gy., Jiang, Dk. Dynamics and Protection of the Relative Entropy of Coherence via Additional Non-interacting Qubits. Int J Theor Phys 58, 333–344 (2019). https://doi.org/10.1007/s10773-018-3934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3934-9

Keywords

Navigation