Skip to main content
Log in

Entanglement Purification of Noisy Two-Qutrit States Via Environment Measurement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Entanglement swapping combined with environment measurement is proposed to purify entanglement of two-qutrit entangled states subjected to the local individual amplitude damping channels. The resultant states of our scheme have much more entanglement even though entanglement swapping itself cannot purify entanglement. When the scheme is applied to dense coding, the dense coding capacity can be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  3. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  4. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two spin-\(\frac {1}{2}\) density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574 (1997)

    Article  ADS  MATH  Google Scholar 

  5. Linden, N., Massar, S., Popescu, S.: Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)

    Article  ADS  Google Scholar 

  6. Kent, A.: Entangled mixed states and local purification. Phys. Rev. Lett. 81, 2839 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  8. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002 (2000)

    Article  ADS  MATH  Google Scholar 

  9. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  10. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  11. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  12. Dür, W., Aschauer, H., Briegel, H.J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  14. Yang, M., Song, W., Cao, Z.L.: Entanglement purification for arbitrary unknown ionic states via linear optics. Phys. Rev. A 71, 012308 (2005)

    Article  ADS  Google Scholar 

  15. Zou, J.H., Hu, X.M.: Concentration of unknown atomic entangled states via entanglement swapping through Raman interaction. Chin. Phys. Lett 25, 3142 (2008)

    Article  ADS  Google Scholar 

  16. Sheng, Y.B., Feng, Z.F., Ou-Yang, Y., Qu, C.C., Zhou, L.: Arbitrary partially entangled three-electron W state concentration with controlled-not gates. Chin. Phys. Lett. 31, 050303 (2014)

    Article  ADS  Google Scholar 

  17. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  18. Song, W., Yang, M., Cao, Z.L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89, 014303 (2014)

    Article  ADS  Google Scholar 

  19. Plama, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  21. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  22. Wang, H.F., Zhang, S., Zhu, A.D., Yi, X.X., Yeon, K.H.: Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Opt. Express 19, 25433 (2011)

    Article  ADS  Google Scholar 

  23. Liu, A.P., Cheng, L.Y., Chen, L., Su, S.L., Wang, H.F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Commun. 313, 180 (2014)

    Article  ADS  Google Scholar 

  24. Facchi, P., Lindar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  25. Wang, S.C., Li, Y., Wang, X.B., Kwek, L.C.: Operator quantum Zeno effect: protecting quantum information with noisy two-qubit interactions. Phys. Rev. Lett. 110, 100505 (2013)

    Article  ADS  Google Scholar 

  26. Yao, C., Ma, Z.H., Chen, Z.H., Serafini, A.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  27. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  28. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  29. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)

    Article  ADS  Google Scholar 

  31. Qiu, L., Tang, G., Yang, X.Q., Wang, A.M.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)

    Article  ADS  Google Scholar 

  33. Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Qiu, L., Liu, Z., Wang, X.: Environment-assisted entanglement purification. Quantum Inf. Comput. 16, 0982 (2016)

    MathSciNet  Google Scholar 

  35. Brukner, C., Zukowski, M., Zeilinger, A.: Quantum communication complexity protocol with two entangled qutrits. Phys. Rev. Lett. 89, 197901 (2002)

    Article  ADS  Google Scholar 

  36. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  37. Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Barlett, S.D., De Guise, H., Sanders, B.C.: Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65, 052316 (2002)

    Article  ADS  Google Scholar 

  39. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature (London) 412, 313 (2001)

    Article  ADS  Google Scholar 

  40. Molina-Terriza, G., Vaziri, A., Ursin, R., Zeilinger, A.: Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501 (2005)

    Article  ADS  Google Scholar 

  41. Inoue, R., Yonehara, T., Miyamoto, Y., Koashi, M., Kozuma, M.: Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Phys. Rev. Lett. 103, 110503 (2009)

    Article  ADS  Google Scholar 

  42. Qiu, L., Ye, B.: Thermal quantum and total correlations in spin-1 bipartite system. Chin. Phys. B 23, 050304 (2014)

    Article  ADS  Google Scholar 

  43. Qiu, L., Tang, G., Yang, X.Q., Xun, Z.P., Ye, B., Wang, A.M.: Sudden change of quantum discord in qutrit-qutrit system under depolarising noise. Int. J. Theor. Phys. 53, 2769 (2014)

    Article  MATH  Google Scholar 

  44. Lanyon, B.P., Weinhold, T.J., Langford, N.K., O’Brien, J.L., Resch, K.J., Gilchrist, A., White, A.G.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2008)

    Article  ADS  Google Scholar 

  45. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  46. Nikolopoulos, G.M., Alber, G.: Security bound of two-basis quantum-key-distribution protocols using qudits. Phys. Rev. A 72, 032320 (2005)

    Article  ADS  Google Scholar 

  47. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  48. Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cheçińska, A., Wódkiewicz, K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A 76, 052306 (2007)

    Article  ADS  Google Scholar 

  50. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  51. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Qiu, L., Wang, A.M., Ma, X.S.: Optimal dense coding with thermal entangled states. Physica A 383, 325 (2007)

    Article  ADS  Google Scholar 

  53. Shadman, Z., Kampermann, H., Macchiavello, C., Bruß, D.: Optimal super dense coding over noisy quantum channels. New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  54. Das, T., Prabhu, R., Sen(De), A., Sen, U.: Multipartite dense coding versus quantum correlation: noise inverts relative capability of information transfer. Phys. Rev. A 90, 022319 (2014)

    Article  ADS  Google Scholar 

  55. Liu, B.H., Hu, X.M., Huang, Y.F., Li, C.F., Guo, G.C., Karlsson, A., Laine, E.M., Maniscalco, S., Macchiavello, C., Piilo, J.: Efficient superdense coding in the presence of non-Markovian noise. EPL 114, 10005 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2015QNA44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Liu, Z. & Pan, F. Entanglement Purification of Noisy Two-Qutrit States Via Environment Measurement. Int J Theor Phys 57, 301–310 (2018). https://doi.org/10.1007/s10773-017-3562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3562-9

Keywords

Navigation