Skip to main content
Log in

On Monoids in the Category of Sets and Relations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The category R e l is the category of sets (objects) and relations (morphisms). Equipped with the direct product of sets, R e l is a monoidal category. Moreover, R e l is a locally posetal 2-category, since every homset R e l(A,B) is a poset with respect to inclusion. We examine the 2-category of monoids R e l M o n in this category. The morphism we use are lax. This category includes, as subcategories, various interesting classes: hypergroups, partial monoids (which include various types of quantum logics, for example effect algebras) and small categories. We show how the 2-categorical structure gives rise to several previously defined notions in these categories, for example certain types of congruence relations on generalized effect algebras. This explains where these definitions come from.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A reader who knows what the Riesz decomposition property means might wish to look at Example 12 now.

  2. The notation (C1), (C2) and (C5) is inherited from the original paper [7]. It coincides with the notation used later in several other papers and in the book [9].

References

  1. Abramsky, S., Coecke, B.: Categorical Quantum Mechanics. In: Engesser, K., Gabbay, D. M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, p. 261–32, Elsevier, Amsterdam (2009)

    Google Scholar 

  2. Awodey, S.: Category Theory. Number 49 in Oxford Logic Guides. Oxford University Press (2006)

  3. Barr, M.: Relational algebras, pp 39–55. Springer Berlin Heidelberg, Berlin (1970)

    MATH  Google Scholar 

  4. Bénabou, J.: Introduction to bicategories Reports of the Midwest Category Seminar, pp. 1–77. Springer (1967)

    Chapter  Google Scholar 

  5. Bush, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer-Verlag, Berlin (1995)

    MATH  Google Scholar 

  6. Bénabou, J.: Catégories relatives. C.R. Acad. Sci. Paris 260, 3824–3827 (1965)

    MATH  MathSciNet  Google Scholar 

  7. Chevalier, G., Pulmannová, S.: Some ideal lattices in partial abelian monoids and effect algebras. Order 17, 75–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Contreras, I.: Groupoids, Frobenius algebras and Poisson sigma models. In: Mathematical Aspects of Quantum Field Theories pp. 413–426. Springer (2015)

  9. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht and Ister Science, Bratislava (2000)

  10. Ehresmann, C.: Catégories structurées. Ann. Sci. École Norm. Sup. 80(3), 349–426 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  11. Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19, 931–945 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Goodearl, K. R.: Partially ordered abelian groups with interpolation. Amer. Math. Soc, Providence (1986)

  14. Grätzer, G.: General Lattice Theory. Birkhäuser, second edition (1998)

  15. Heunen, C., Contreras, I., Cattaneo, A. S.: Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra 217, 114–124 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heunen, C., Karvonen, M.: Monads on dagger categories. Theory and Applications of Categories 31, 1016–1043 (2016)

    MATH  MathSciNet  Google Scholar 

  17. Heunen, C., Tull, S.: Categories of relations as models of quantum theory. In: Quantum Physics and Logic 2015 volume 195 of Electronic Proceedings in Theoretical Computer Science, pp. 247–261 (2015)

  18. Jenča, G., Pulmannová, S.: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra univ 47, 443–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kelly, G. M., Street, R.: Review of the elements of 2-categories. In Category seminar, pp. 75–103. Springer (1974)

  20. Kelly, M.: Basic concepts of enriched category theory, volume 64. CUP Archive (1982)

  21. Kenney, T., Paré, R.: Categories as monoids in Span, Rel and Sup. Cahiers de topologie et géométrie différentielle catégoriques 52(3), 209–240 (2011)

    MATH  MathSciNet  Google Scholar 

  22. Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Lack, S.: A 2-categories companion. In: Towards higher categories, pp. 105–191. Springer (2010)

  24. Lane, S. M.: Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer-Verlag (1971)

  25. Tom Leinster: Higher operads, higher categories, volume 298. Cambridge University Press (2004)

  26. Loomis, L. H.: The lattice theoretic background of the dimension theory of operator algebras. Memoirs of the AMS, 18 (1955)

  27. Ludwig, G.: Foundations of Quantum Mechanics. Springer-Verlag, Berlin (1983)

    Book  MATH  Google Scholar 

  28. Pavlovic, D., Seidel, P.-M.: (modular) effect algebras are equivalent to (Frobenius) antispecial algebras. In: Ross Duncan and Chris Heunen, editors, Proceedings 13th International Conference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June 2016, volume 236 of Electronic Proceedings in Theoretical Computer Science, pp. 145–160. Open Publishing Association (2017)

  29. Ross Street: The formal theory of monads. Journal of Pure and Applied Algebra 2(2), 149–168 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wall, H. S.: Hypergroups. American Journal of Mathematics 59(1), 77–98 (1937)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are indebted to both anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gejza Jenča.

Additional information

This research is supported by grants VEGA 2/0069/16, 1/0420/15, Slovakia and by the Slovak Research and Development Agency under the contract APVV-14-0013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenčová, A., Jenča, G. On Monoids in the Category of Sets and Relations. Int J Theor Phys 56, 3757–3769 (2017). https://doi.org/10.1007/s10773-017-3304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3304-z

Keywords

Navigation