Skip to main content
Log in

Cosmic Evolution of Scalar Fields with Multiple Vacua: Generalized DBI and Quintessence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form for arbitrary scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed \(\dot {\phi }\), the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brans, C., Dicke, H.R.: Phys. Rev. D 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. Csaki, C., Graesser, M., Randall, L., Terning, J.: Phys. Rev. D 62, 045015 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Higgs, W.P.: Phys. Lett. B 12, 132 (1964)

    Article  Google Scholar 

  4. Gibbons, G.W., Maeda, K.: Nucl. Phys. B 298, 741 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sen, A.: JHEP 0204, 048 (2002)

    Article  ADS  Google Scholar 

  6. Thomas, S., Ward, J.: Phys. Rev. D 76, 023509 (2007). arXiv:hep-th/0702229

  7. Thomas, S., Ward, J.: JHEP 0610, 039 (2006). arXiv:hep-th/0508085

  8. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  9. Fujii, Y.: Phys. Rev. D 26, 2580 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ford, L.H.: Phys. Rev. D 35, 2339 (1987)

    Article  ADS  Google Scholar 

  11. Wetterich, C.: Nucl. Phys. B 302(668), 1988

  12. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  13. Chiba, T., Sugiyama, N., Nakamura, T.: Mon. Not. R. Astron. Soc. 289, L5 (1997)

    Article  ADS  Google Scholar 

  14. Ferreira, P.G., Joyce, M.: Phys. Rev. Lett. 79, 4740 (1997)

    Article  ADS  Google Scholar 

  15. Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  16. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  17. Caldwell, R.R., Dave, R., Steinhardt, J.P.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  18. Zlatev, I., Wang, L.M., Steinhardt, J.P.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  19. Tsujikawa, S.: Class. Quant. Grav. 30, 214003 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  21. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, J.P.: Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  22. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, J.P.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  23. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  24. de la Macorra, A., Piccinelli, G.: Phys. Rev. D 61, 123503 (2000)

    Article  ADS  Google Scholar 

  25. Ng, S.C.C., Nunes, N.J., Rosati, F.: Phys. Rev. D 64, 083510 (2001)

    Article  ADS  Google Scholar 

  26. Corasaniti, P.S., Copeland, E.J.: Phys. Rev. D 67, 063521 (2003)

    Article  ADS  Google Scholar 

  27. Caldwell, R.R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005)

    Article  ADS  Google Scholar 

  28. Linder, E.V.: Phys. Rev. D 73, 063010 (2006)

    Article  ADS  Google Scholar 

  29. Elizalde, E., Makarenko, A.N., et al.: Astrophys. Space. Sci. 344, 479 (2013)

    Article  ADS  Google Scholar 

  30. Barreiro, T., Copeland, E.J., Nunes, N.J.: Phys. Rev. D 61, 127301 (2000)

    Article  ADS  Google Scholar 

  31. Copeland, E.J., Mizuno, S., Shaeri, M.: Phys. Rev. D 79, 103515 (2009). arXiv:0904.0877

  32. Nojiri, S., Odintsov, D.S.: Phys. Lett. B 649, 440 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Liddle, A.R., Scherrer, J.R.: Phys. Rev. D 59, 023509 (1999)

    Article  ADS  Google Scholar 

  34. Sahni, V., Starobinsky, A.: Phys. Rev. D 9, 373 (2000)

    Google Scholar 

  35. Urena-Lopez, L.A., Matos, T.: Phys. Rev. D 62, 081302 (2000)

    Article  ADS  Google Scholar 

  36. Pavluchenko, S.A.: Phys. Rev. D 67, 103518 (2003)

    Article  ADS  Google Scholar 

  37. Sahni, V., Wang, L.-M.: Phys. Rev. D 62, 103517 (2000). [astro-ph/9910097]

  38. Fadragas, C.R., Leon, G., Saridakis, E.N.: Class. Quant. Grav. 31, 075018 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. Guo, Z.K., Ohta, N.: JCAP. 0804, 035 (2008). arXiv:0803.1013

  40. Martin, J., Yamaguchi, M.: Phys. Rev. D 77, 123508 (2008)

    Article  ADS  Google Scholar 

  41. Gumjudpai, B., Ward, J.: Phys. Rev. D 80, 023528 (2009)

    Article  ADS  Google Scholar 

  42. Wei, H.: Phys. Lett. B 682, 98 (2009)

    Article  ADS  Google Scholar 

  43. Ahn, C., Kim, C., Linder, E.V.: Phys. Lett. B 684, 181 (2010)

    Article  ADS  Google Scholar 

  44. Copeland, E.J., Mizuno, S., Shaeri, M.: Phys. Rev. D 81, 123501 (2010)

    Article  ADS  Google Scholar 

  45. Tomi, K., Danielle, W., Ivonne, Z.: JCAP 06, 036 (2014)

    Google Scholar 

  46. Myers, R.C.: JHEP 9912, 022 (1999). arXiv:hep-th/9910053

  47. Tseytlin, A.A.: Nucl. Phys. B 501, 41 (1997). arXiv:hep-th/9701125

  48. Douglas, M.R.: JHEP 0305, 046 (2003)

    Article  ADS  Google Scholar 

  49. Ashok, S., Douglas, M.: JHEP 0401, 060 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  50. Susskind, L. arXiv:/hep-th/0302219

  51. Coleman, S.R.: Phys. Rev. D 15, 2929 (1977)

    Article  ADS  Google Scholar 

  52. Coleman, S.R., De Luccia, F.: Phys. Rev. D 21, 3305 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  53. Albrecht, A., Skordis, C.: Phys. Rev. Lett. 84, 2076 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank one of the referees for pointing out some important typos. This work is supported by the Chinese MoST 863 program under grant 2012AA121701, the NSFC under grant 11373030, 10973014, 11373020 and 11465012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Shen, YG. Cosmic Evolution of Scalar Fields with Multiple Vacua: Generalized DBI and Quintessence. Int J Theor Phys 55, 4532–4544 (2016). https://doi.org/10.1007/s10773-016-3076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3076-x

Keywords

Navigation