Skip to main content
Log in

Sharing the Quantum State and the Classical Information Simultaneously

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS National Computer Conference, New York, 313–317 (1979)

  3. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. Proceedings of IEEE Global Telecommunication Conference, New Jersey, 99–102 (1987)

  4. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. CRYPTO’91. LNCS 576, 11–15 (1992)

    Google Scholar 

  5. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or how to cope with perpetual leakage. CRYPTO’95. LNCS 963, 339–352 (1995)

    MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 175–179 (1984)

  7. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)

    Article  ADS  Google Scholar 

  11. Li, Q., Long, D.Y., Chan, W.H., Qiu, D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys 50, 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process 11, 1619–1625 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process 12, 55–68 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process 13, 21–31 (2014)

    Article  ADS  MATH  Google Scholar 

  16. Shi, R.H., Lv, G.L., Wang, Y., Huang, D.Z., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys 52, 539–548 (2013)

    Article  MATH  Google Scholar 

  17. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process 12, 331–344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state forMalism. Phys. Rev. A 86, 042303 (2012)

    Article  ADS  Google Scholar 

  19. Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)

    Article  ADS  Google Scholar 

  20. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, 427–437 (1987)

  21. Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret-sharing protocol with fairness. Phys. Scripta 89, 075104 (2014)

    Article  ADS  Google Scholar 

  22. Steane, A.: The ion trap quantum information processor. Appl. Phys. B 64, 623–643 (1997)

    Article  ADS  Google Scholar 

  23. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett 74, 4087–4090 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawang Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Dai, Y. Sharing the Quantum State and the Classical Information Simultaneously. Int J Theor Phys 55, 3777–3787 (2016). https://doi.org/10.1007/s10773-016-3006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3006-y

Keywords

Navigation