Skip to main content
Log in

Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Inproceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Yuan, H., Song, J., Han, L.F., Hou, K., Shi, S.H.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281 (18), 4803–4806 (2008)

    Article  ADS  Google Scholar 

  5. Hwang, T., Tsai, C.W., Chong, S.K.: Probabilistic quantum key distribution. Quantum Inf. Comput. 11(7–8), 615–637 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998)

    Article  ADS  Google Scholar 

  7. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 771–781 (2012)

    Article  ADS  Google Scholar 

  8. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112(25), 250501 (2014)

    Article  ADS  Google Scholar 

  9. Collins, D., Gisin, N., De Riedmatten, H.: Quantum relays for long distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Elliott, C.: Building the quantum network. New J. Phys. 4 (2002)

  11. Piparo, N.L., Razavi, M.: Long-distance trust-free quantum key distribution. IEEE J. Sel. Topics Quantum Electron. 21(3), 1–8 (2015)

    Article  Google Scholar 

  12. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 178, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  13. Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1999)

    Article  ADS  Google Scholar 

  14. Deng, F., Liu, X., Ma, Y., Xiao, L., Long, G.: A theoretical scheme for multi-user quantum key distribution with N Einstein-Podolsky-Rosen pairs on a passive optical network. Chinese Phys. Lett. 19(7), 893–896 (2002)

    Article  ADS  Google Scholar 

  15. Deng, F., Li, X., Li, C., Zhou, P., Zhou, H.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Li, X., Deng, F., Zhou, H.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  17. Li, X., Zhao, B., Sheng, Y., Deng, F., Zhou, H.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quant. Inform. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  18. Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G: Phys. Mech. Astron. 54(3), 496–501 (2010)

    Article  ADS  Google Scholar 

  19. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)

    Article  ADS  Google Scholar 

  20. Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  21. Deng, F., Li, X., Zhou, H., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  22. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  23. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006) 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  24. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  25. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12(2), 1089–1107 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments to improve the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CW., Lin, J. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications. Int J Theor Phys 55, 3200–3206 (2016). https://doi.org/10.1007/s10773-016-2950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2950-x

Keywords

Navigation