Skip to main content
Log in

Remote State Preparation of a Two-Atom Entangled State in Cavity QED

International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender’s side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver’s side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bennett, C.H., et al.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Paki, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    ADS  Google Scholar 

  4. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077920 (2001)

    Article  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Davidovich, L., Zagury, N., Brune, M., Raimond, J.M., Haroche, S.: Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A 50, 895 (1994)

    Article  ADS  Google Scholar 

  8. Cirac, J.I., Parkins, A.S.: Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A 50, 4441 (1994)

    Article  ADS  Google Scholar 

  9. Zheng, S.B., Guo, G.C.: Efficient Scheme for two-atom entanglement and quantum information processing in Cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  10. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in the thermal motion. Phys. Rev. A 68, 035801 (2003)

    Article  ADS  Google Scholar 

  12. Yang, C. P., Chu, S-I, Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  13. Yang, C. P., Chu, S-I, Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  14. Bonato, C., Haupt, F., Oemrawsingh, S. S. R., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  15. Barrett, S. D., Rohde, P. P., Stace, T. M.: Scalable quantum computing with atomic ensembles. New J. Phys. 12, 093032 (2010)

    Article  ADS  Google Scholar 

  16. Yang, C. P.: Quantum information transfer with superconducting flux qubits coupled to a resonator. Phys. Rev. A 82, 054303 (2010)

    Article  ADS  Google Scholar 

  17. C-P Yang, Q-P Su, Han, S.: Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phy. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  18. Zheng, S.B.: Simplified construction and physical realization of n-qubit controlled phase gates. Phys. Rev. A 86, 012326 (2012)

    Article  ADS  Google Scholar 

  19. Wei, H. R., Deng, F. G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  20. Liu, Y.: Scheme for the preparation of macroscopic W-type state of atomic ensembles in cavity QED coupled with optical fibers. Sci. Chin.-Phys. Mech Astron. 56, 2122 (2013)

    Article  ADS  Google Scholar 

  21. Luo, M. X., Deng, Y., Li, H. R., et al.: Generations of N-atom GHZ state and 2n-atom W state assisted by quantum dots in optical microcavities. Quantum Inf. Process 14, 3661 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Ye, L., Ma, Y-C, Guo, G-C: Remote state preparation of quantum state via cavity QED. Int. J. Quantum Inf. 3, 475 (2005)

    Article  MATH  Google Scholar 

  23. Xu, X-B, Liu, J-M: Probabilistic remote preparation of a three-atom Greenberger-Horne-Zeilinger class state via cavity quantum electrodynamics. Can. J. Phys. 84, 1089 (2006)

    Article  ADS  Google Scholar 

  24. Wang, X-W, Pen, Z-H: Scheme for implementing perfect remote state preparation with W-class state in cavity QED. Chin. Phys. B 17, 2346 (2008)

    Article  ADS  Google Scholar 

  25. Ashfaq, H. K., Rameez-ul-lslam, Farhan, S.: Remote preparation of atomic and field cluster states from a pair of tripartite GHZ states. Chin. Phys. B 19, 040309 (2010)

    Article  ADS  Google Scholar 

  26. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057902 (2003)

    Article  ADS  Google Scholar 

  27. Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004)

    Article  ADS  Google Scholar 

  28. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  29. Barreiro, J. T., Wei, T. C., Kwiat, P. G. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  30. Solis-Prosser, M. A., Neves, L.: Remote state preparation of spatial qubit. Phys. Rev. A 84, 012330 (2011)

    Article  ADS  Google Scholar 

  31. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748 (2011)

    Article  MATH  Google Scholar 

  32. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T, Vedral4, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 2377 (2012)

  33. Luo, M. X., Chen, X. B., Yang, Y. X., et al.: Experimental architecture of joint remote state preparation. Quantum Inf. Process 11, 751 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Radmak, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multiplication remote state preparation. Phys. Rev. A 88, 032304 (2013)

    Article  ADS  Google Scholar 

  35. Wang, Z-Y: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process 12, 1321 (2013)

    Article  MATH  ADS  Google Scholar 

  36. Luo, M-X, Deng, Y., Chen, X-B, Yang, Y-X: The faithful remote preparation of general quantum states. Quantum Inf. Process 12, 279 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Cao, T. B., Nguyen, B. A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci.: Nanotechnol. 5, 015003 (2014)

    Google Scholar 

  38. Zhou, N. R., Cheng, H. L., Tao, X. Y., et al.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process 13, 513 (2014)

    Article  MATH  Google Scholar 

  39. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China (No: 61201258), the Open Fund of Shanghai Dianji University for Computer Application Technology (No. 13XKJ01-2) and the Program of Practice learning for Faculty Development in Universities of Shanghai .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, XQ., Xiao, J., Ren, Y. et al. Remote State Preparation of a Two-Atom Entangled State in Cavity QED. Int J Theor Phys 55, 2764–2772 (2016). https://doi.org/10.1007/s10773-015-2909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2909-3

Keywords

Navigation