Skip to main content
Log in

Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We characterize the efficiency of the practical continuous-variable quantum key distribution (CVQKD) while inserting the heralded noiseless linear amplifier (NLA) before detectors to increase the secret key rate and the maximum transmission distance in Gaussian channels. In the heralded NLA-based CVQKD system, the entanglement source is only placed in the middle while the two participants are unnecessary to trust their source. The intensities of source noise are sensitive to the tunable NLA with the parameter g in a suitable range and can be stabilized to the suitable constant values to eliminate the impact of channel noise and defeat the potential attacks. Simulation results show that there is a well balance between the secret key rate and the maximum transmission distance with the tunable NLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  2. Zhang, H., Fang, J., He, G.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86, 022338 (2012)

    Article  ADS  Google Scholar 

  3. Qian, Y., Shen, Z., He, G., Zeng, G.: Quantum-cryptography network via continuous-variable graph states. Phys. Rev. A 86, 052333 (2012)

    Article  ADS  Google Scholar 

  4. Ma, X.-C., Sun, S.-H., Jiang, M.-S., Gui, M., Liang, L.-M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 042335 (2014)

    Article  ADS  Google Scholar 

  5. Zhang, Y.-C., Li, Z., Song, Y., Wanyi, G., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference Computers, System and Signal Processing, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., R.lph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  9. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Rev. Mod. Phys. 87, 022308 (2013)

    Article  Google Scholar 

  10. Garcia-Patron, R.: Ph.D. thesis, Universite Libre de Bruxelles, Bruxelles (2007)

  11. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. 86, 012327 (2012)

    Article  ADS  Google Scholar 

  12. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: Lvovsky, A. (ed.) Quantum Communication Measurement and Computing Proceedings of 9th International Conference, pp. 155–160. AIP Conf. Proc. No. 1110, AIP, New York (2009). arXiv:0809.0326

  13. Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801 (2011)

    Article  ADS  Google Scholar 

  14. Zavatta, A., Fiurasek, J., Bellini, M.: A quantum delivery note. Nature Photon. Lett. 5, 52 (2011)

    Article  ADS  Google Scholar 

  15. Walk, N., Ralph, T.C., Symul, T., Lam, P.K.: Security of continuous-variable quantum cryptography with Gaussian postselection. Phys. Rew. A 87, 020303(R) (2013)

    Article  ADS  Google Scholar 

  16. Ralph, T.C.: Quantum error correction of continuous-variable states against Gaussian noise. Phys. Rev. A 84, 022339 (2011)

    Article  ADS  Google Scholar 

  17. Navascués, M., Acín, A.: Security bounds for continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  18. Garcéa-Patrín, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  19. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  20. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  21. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  22. Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature (London) 421, 238 (2003)

    Article  ADS  Google Scholar 

  23. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, Ph.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3, 535 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Häseler, H., Moroder, T., Lütkenhaus, N.: Testing quantum devices: Practical entanglement verification in bipartite optical systems. Phys. Rev. A 77, 032303 (2008)

    Article  ADS  Google Scholar 

  25. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  26. Gerry, C.C., Knight, P.L.: Introductory quantum optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  27. Walk, N., Ralph, T.C.: Gaussian post-selection for continuous variable quantum cryptography, quantum physics. arXiv:1206.0936v2 [quant-ph] 6 Jun 2012

  28. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B: Mol. Opt. Phys. 42, 114014 (2009)

    Article  ADS  Google Scholar 

  29. He, G., Zhu, J., Zeng, G.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73, 012314 (2006)

    Article  ADS  Google Scholar 

  30. Huang, P., He, G., Fang, J., Zeng, G.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  31. Wang, X.-Y., Bai, Z.-L., Wang, S.-F., Li, Y.-M., Peng, K.-C.: Four-state modulation continuous variable quantum key distribution over 30 km fibre and analysis of excess noise. Chin. Phys. Lett. 30(1), 010305 (2013)

    Article  ADS  Google Scholar 

  32. Wang, X.-Y., Bai, Z.-L., Du, P.-Y., Li, Y.-M., Peng, K.-C.: Ultrastable fiber-based time-domain balanced homodyne detector for quantum communication. Chin. Phys. Lett. 29(12), 124202 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20130162110012), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjing Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhou, J., Shi, J. et al. Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle. Int J Theor Phys 55, 1156–1166 (2016). https://doi.org/10.1007/s10773-015-2757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2757-1

Keywords

Navigation