Skip to main content
Log in

Quantum Fisher Information of a 3 × 3 Bound Entangled State and its Relation with Geometric Discord

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recent studies on quantum Fisher information (QFI) have been focused mostly on qubit systems within the context of how entanglement helps surpassing the classical limit of separable states and the limit that a given entangled system can achieve for parameter estimation. However, there are only a few works on bound entangled systems. In this work, we study the QFI of a system of the smallest dimension that bound entanglement can be observed: A bipartite quantum system of two particles of three-levels each. An interesting property of this state is that depending only on a parameter, the state can be separable, bound entangled or free entangled. We show that QFI exhibits a smooth and continues increase with respect to this parameter throughout the transition from separable to bound entangled and from bound entangled to free entangled regions. We show that in any region, this state is not useful for sub-shot noise interferometry. We also relate the QFI of this state with its geometric discord and show how these two properties exhibit a similar behavior throughout this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Dur, W., Vidal, G., Cirac, J. I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Plenio, M. B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Eisert, J., Plenio, M. B.: A comparison of entanglement measures. J. Mod. Opt. 46, 145 (1999)

    Article  ADS  Google Scholar 

  5. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Horodecki, P., Horodecki, R.: Distillation and bound entanglement. Quant. Inf. Comput. 1, 45 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Shor, P. W., Smolin, J. A., Thapliyal, A. V.: Superactivation of bound entanglement. Phys. Rev. Lett. 90, 107901 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Horodecki, K., Horodecki, M., Horodecki, P., Leung, D. W., Oppenheim, J.: Quantum key distribution based on private states: unconditional security over untrusted channels with zero quantum capacity. IEEE Trans. Inf. Theory 54, 2621 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Amselem, E., Bourennane, M.: Experimental four-qubit bound entanglement. Nat. Phys. 5, 748 (2009)

    Article  Google Scholar 

  13. Lavoie, J., Kaltenbaek, R., Piani, M., Resch, K. J.: Experimental bound entanglement in a four-photon state. Phys. Rev. Lett. 105, 130501 (2010)

    Article  ADS  Google Scholar 

  14. Kaneda, F., Shimizu, R., Ishizaka, S., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Experimental activation of bound entanglement. Phys. Rev. Lett. 109, 040501 (2012)

    Article  ADS  Google Scholar 

  15. Amselem, E., Sadiq, M., Bourennanne, M.: Experimental bound entanglement through a Pauli channel. Sci. Rep. 3, 1966 (2013)

    Article  ADS  Google Scholar 

  16. Ollivier, H., Zurek, W. H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  17. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  18. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)

    Article  ADS  Google Scholar 

  20. Hassan, A. S. M., Lari, B., Joag, P. S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

    Article  ADS  Google Scholar 

  21. Rana, S., Parashar, P.: Geometric discord and Measurement-induced nonlocality for well known bound entangled states. Quant. Inf. Proc. 12, 7 (2013)

    Article  MathSciNet  Google Scholar 

  22. Pezze, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hyllus, P., Guhne, O., Smerzi, A: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82, 012337 (2010)

    Article  ADS  Google Scholar 

  24. Xiong, H. N., Ma, J., Liu, W. F., Wang, X.: Quantum Fisher information for superpositions of spin states. Quant. Inf. Comput. 10, 5 & 6 (2010)

    MathSciNet  Google Scholar 

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  26. Ma, J., Huang, Y., Wang, X., Sun, C. P.: Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  27. Ji, Z., et al.: Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54, 5172 (2008)

    Article  Google Scholar 

  28. Liu, W. F., Xiong, H. N., Ma, J., Wang, X.: Quantum fisher information in the generalized one-axis twisting model. Int. J. Theor. Phys. 49, 1073 (2010)

    Article  MATH  Google Scholar 

  29. Escher, B. M., Filho, M., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Article  Google Scholar 

  30. Yi, X., Huang, G., Wang, J.: Quantum fisher information of a 3-qubit state. Int. J. Theor. Phys. 51, 3458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Spagnalo, N., et al.: Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862 (2010)

    Google Scholar 

  32. Liu, Z.: Spin squeezing in superposition of four-qubit symmetric state and W states. Int. J. Theor. Phys. 52, 820 (2013)

    Article  MATH  ADS  Google Scholar 

  33. Ozaydin, F., Altintas, A. A., Bugu, S., Yesilyurt, C.: Quantum fisher information of N particles in the superposition of W and GHZ states. Int. J. Theor. Phys. 52, 2977 (2013)

    Article  MathSciNet  Google Scholar 

  34. Ozaydin, F., Altintas, A. A., Bugu, S., Yesilyurt, C., Arik, M.: Behavior of quantum fisher information of bell pairs under decoherence channels. Acta Phys. Pol. A 125(2), 606 (2014)

    Article  Google Scholar 

  35. Ozaydin, F., Altintas, A. A., Bugu, S., Yesilyurt, C., Arik, M.: Quantum fisher information of several qubits in the superposition of A GHZ and two W states with arbitrary relative phase. Int. J. Theor. Phys. 53, 3219 (2014)

    Article  MATH  Google Scholar 

  36. Erol, V., Ozaydin, F., Altintas, A. A. Sci. Rep. 4, 5422 (2014)

    Article  ADS  Google Scholar 

  37. Ozaydin, F.: Phase damping destroys quantum fisher information of W states. Phys. Lett. A 378, 3161 (2014)

    Article  ADS  Google Scholar 

  38. Toth, G.: Multipartite entanglement and high precision metrology. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  39. Matsuzaki, Y., Benjamin, S. C., Fitzsimons, J.: Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Phys. Rev. A 84, 012103 (2011)

    Article  ADS  Google Scholar 

  40. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    Article  MATH  ADS  Google Scholar 

  41. Gibilisco, P., Imparato, D., Isola, T.: Uncertainty principle and quantum Fisher information-II. J. Math. Phys. 48, 072109 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. Andai, A.: Uncertainty principle with quantum Fisher information. J. Math. Phys. 49, 012106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  43. Berrada, K., Khalek, S. B., Obada, A. S. F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412 (2012)

    Article  MATH  ADS  Google Scholar 

  44. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  45. Kacprowicz M., et al.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photon. 4, 357 (2010)

    Article  ADS  Google Scholar 

  46. Dur, W.: Multipartite bound entangled states that violate bell’s inequality. Phys. Rev. Lett. 87, 230402 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  47. Smolin, J. A.: Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  48. Augusiak, R., Horodecki, P.: Generalized Smolin states and their properties. Phys. Rev. A 73, 012318 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  49. Hyllus, P., et al.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  50. Czekaj, L., Przysiezna, A., Horodecki, M., Horodecki, P.: Quantum metrology: Heisenberg limit with bound entanglement. arXiv:1403.5867

  51. Horodecki, P., Horodecki, M., Horodecki, R.: Binding entanglement channels. J. Mod. Opt. 47, 347 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  52. Hao, X., Tong, N. H., Zhu, S.: Dynamics of the quantum Fisher information in a spin-boson model. J. Phys. A: Math. Theor. 46, 355302 (2013)

    Article  MathSciNet  Google Scholar 

  53. Yao, Y., Xiao, X., Wang, X., Sun, C. P.: Multiple phase estimation in quantum cloning machines. Phys. Rev. A 90, 022327 (2014)

    Article  ADS  Google Scholar 

  54. Zhang, Y. M., Li, X. W., Yang, W., Jin, G. R.: Quantum fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  55. Liu, J., Jing, X. X., Zhong, W., Wang, X. G.: Quantum fisher information for density matrices with arbitrary ranks. Commun. Theor. Phys. 61, 45 (2014)

    Article  MATH  ADS  Google Scholar 

  56. Liu, J., Xiong, H. N., Song, F., Wang, X.: Fidelity susceptibility and quantum Fisher information for density operators with arbitrary ranks. Phys. A 410, 167 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ozaydin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaydin, F. Quantum Fisher Information of a 3 × 3 Bound Entangled State and its Relation with Geometric Discord. Int J Theor Phys 54, 3304–3310 (2015). https://doi.org/10.1007/s10773-015-2570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2570-x

Keywords

Navigation