Skip to main content
Log in

The Casimir Effect for Parallel Plates in the Spacetime with a Fractal Extra Compactified Dimension

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like \(\delta>\frac{1}{2}\) to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambjorn, J., Jurkiewicz, J., Loll, R.: Phys. Rev. D 72, 064014 (2005)

    Article  ADS  Google Scholar 

  2. Lauscher, O., Reuter, M.: J. High Energy Phys. 0510, 050 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. Benedetti, D.: Phys. Rev. Lett. 102, 111303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Calcagni, G.: Phys. Rev. Lett. 104, 251301 (2010)

    Article  ADS  Google Scholar 

  5. Calcagni, G.: Phys. Lett. B 697, 251 (2011)

    Article  ADS  Google Scholar 

  6. Kaluza, T.: Sitz.ber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1, 966 (1921)

    Google Scholar 

  7. Klein, O.: Z. Phys. 37, 895 (1926)

    Article  ADS  MATH  Google Scholar 

  8. Smolyaninov, I.I.: Phys. Rev. D 65, 047503 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  9. Casimir, H.B.G.: Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  10. Bordag, M., Mohideen, U., Mostepanenko, V.M.: Phys. Rep. 353, 1 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Milton, K.A.: The Casimir Effect, Physical Manifestation of Zero-Point Energy. World Scientific, Singapore (2001)

    Book  Google Scholar 

  12. Mostepanenko, V.M., Trunov, N.N.: The Casimir Effect and Its Applications. Oxford University Press, Oxford (1997)

    Google Scholar 

  13. Lamoreaux, S.K.: Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  14. Mohideen, U., Roy, A.: Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  15. Bressi, G., Carugno, G., Onfrio, R., Ruoso, G.: Phys. Rev. Lett. 88, 041804 (2002)

    Article  ADS  Google Scholar 

  16. Decca, R.S., Lepez, D., Fischbach, E., Kraus, D.E.: Phys. Rev. Lett. 91, 050402 (2003)

    Article  ADS  Google Scholar 

  17. Poppenhaeger, K., Hossenfelder, S., Hofmann, S., Bleicher, M.: Phys. Lett. B 582, 1 (2004)

    Article  ADS  Google Scholar 

  18. Cheng, H.: Mod. Phys. Lett. A 21, 1957 (2006)

    Article  ADS  Google Scholar 

  19. Cheng, H.: Phys. Lett. B 643, 311 (2006)

    Article  ADS  Google Scholar 

  20. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Phys. Rev. Lett. 95, 250402 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. Edery, A.: Phys. Rev. D 75, 105012 (2007)

    Article  ADS  Google Scholar 

  22. Edery, A., Marachevsky, V.: J. High Energy Phys. 0812, 035 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Cheng, H.: Phys. Lett. B 668, 72 (2008)

    Article  ADS  Google Scholar 

  24. Kirsten, K., Fulling, S.A.: Phys. Lett. B 671, 179 (2009)

    Article  ADS  Google Scholar 

  25. Kirsten, K., Fulling, S.A.: Phys. Rev. D 79, 065019 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Milton, K., Wagner, J.: Phys. Rev. D 80, 125028 (2009)

    Article  ADS  Google Scholar 

  27. Elizalde, E., Odintsov, S.D., Saharian, A.A.: Phys. Rev. D 79, 065023 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Teo, L.P.: Phys. Lett. B 682, 259 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Rypestol, M., Brevik, I.: New J. Phys. 12, 013022 (2010)

    Article  ADS  Google Scholar 

  30. Elizalde, E., Odintsov, S.D., Romeo, A., Bysenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  31. Elizalde, E.: Ten Physical Applications of Spectral Zeta Functions. Springer, Berlin (1995)

    MATH  Google Scholar 

  32. Frank, M., Turan, I., Ziegler, L.: Phys. Rev. D 76, 015008 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC No. 10875043 and is partly supported by the Shanghai Research Foundation No. 07dz22020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H. The Casimir Effect for Parallel Plates in the Spacetime with a Fractal Extra Compactified Dimension. Int J Theor Phys 52, 3229–3237 (2013). https://doi.org/10.1007/s10773-013-1618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1618-z

Keywords

Navigation