Skip to main content
Log in

Optimal Measurement Basis for Economical Phase-covariant Telecloning with Partially Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Wang and Yang (Phys. Rev. A 79:062315, 2009) presented a scheme for economical phase-covariant telecloning of qubits with W-class entangled states. For realizing probabilistically the suboptimal telecloning in the case that the sender’s subsystem and the receivers’ subsystem are partially entangled, they introduced a special two-qubit measurement basis. I here study the effects of the sender’s different measurements on the fidelity of the clones in such a scheme, and obtain several interesting results. The most important result is that Bell-basis is the optimal measurement basis in terms of the average fidelity of the clones, although the special-basis measurement can lead to the suboptimal fidelity with a certain probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: Nature (London) 299, 802 (1982)

    Article  ADS  Google Scholar 

  2. Scarani, V., et al.: Rev. Mod. Phys. 77, 1225 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Shao, X.Q., et al.: Phys. Rev. A 80, 062323 (2009)

    Article  ADS  Google Scholar 

  4. D́ernoch, A., et al.: Phys. Rev. A 80, 062306 (2009)

    Article  ADS  Google Scholar 

  5. Wu, L., Zhu, A.D., Yeon, K.H., Yu, S.C.: Int. J. Theor. Phys. 49, 542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hou, K., Shi, S.H.: Int. J. Theor. Phys. 48, 167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bužek, V., Hillery, M.: Phys. Rev. A 54, 1844 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Lamas-Linares, A., et al.: Science 296, 712 (2002)

    Article  ADS  Google Scholar 

  9. Sanguinetti, B., et al.: arXiv:1005.3485 [quant-ph]

  10. Galva̋o, E.F., Hardy, L.: Phys. Rev. A 62, 022301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  11. Gao, T., Yan, F.L., Wang, Z.X.: Chin. Phys. Lett. 21, 995 (2004)

    Article  ADS  Google Scholar 

  12. Lamoureux, L.P., et al.: Phys. Rev. A 73, 032304 (2006)

    Article  ADS  Google Scholar 

  13. Durt, T., Du, J.F.: Phys. Rev. A 69, 062316 (2004)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bruß, D., et al.: Phys. Rev. A 57, 2368 (1998)

    Article  ADS  Google Scholar 

  16. Murao, M., et al.: Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  17. Ghiu, I.: Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  18. Wang, Q., Li, J.X., Zeng, H.S.: Chin. Phys. Lett. 25, 2770 (2008)

    Article  ADS  Google Scholar 

  19. Wang, X.W., Yang, G.J.: Phys. Rev. A 79, 064306 (2009)

    Article  ADS  Google Scholar 

  20. Wang, X.W., Su, Y.H., Yang, G.J.: Chin. Phys. Lett. 27, 100303 (2010)

    Article  ADS  Google Scholar 

  21. Murao, M., Vedral, V.: Phys. Rev. Lett. 86, 352 (2001)

    Article  ADS  Google Scholar 

  22. Yu, Y.F., Feng, J., Zhan, M.S.: Phys. Rev. A 68, 024303 (2003)

    Article  ADS  Google Scholar 

  23. Murao, M., Plenio, M.B., Vedral, V.: Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  24. Ricci, M., et al.: Phys. Rev. Lett. 92, 047901 (2004)

    Article  ADS  Google Scholar 

  25. Zhao, Z., et al.: Phys. Rev. Lett. 95, 030502 (2005)

    Article  ADS  Google Scholar 

  26. Zhan, X.G., et al.: Commun. Theor. Phys. 51, 1023 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Yang, Z., et al.: Commun. Theor. Phys. 50, 1096 (2008)

    Article  ADS  Google Scholar 

  28. Yan, L.H., Gao, Y.F., Zhao, J.G.: Int. J. Theor. Phys. 48, 2445 (2009)

    Article  MATH  Google Scholar 

  29. Wang, X.W., Yang, G.J.: Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  30. Bruß, D., et al.: Phys. Rev. A 62, 012302 (2000)

    Article  ADS  Google Scholar 

  31. Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. D’Ariano, G.M., Macchiavello, C.: Phys. Rev. A 67, 042306 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhujun Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z. Optimal Measurement Basis for Economical Phase-covariant Telecloning with Partially Entangled States. Int J Theor Phys 50, 3049–3053 (2011). https://doi.org/10.1007/s10773-011-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0805-z

Keywords

Navigation