Skip to main content
Log in

Solutions of a Class of Duffing Oscillators with Variable Coefficients

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The solutions of a class of nonlinear second-order differential equations with a cubic term in the dependent variable being related to Duffing oscillators are obtained by means of the factorization technique. The Lagrangian, the Hamiltonian and the constant of motion are also found through a correspondence with an autonomous system. A physical example is worked out in this frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes, P., Rand, D.: Phase portraits and bifurcations of the non-linear oscillator: \(\ddot{x}+(\alpha+\gamma x^{2})\dot{x}+\beta x+ \delta x^{3}=0\). Int. J. Non-linear Mech. 15, 449–458 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Holmes, P., Whitley, D.: On the attracting set for Duffing’s equation. Physica D 7, 111–123 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ueda, Y.: Survey of regular and chaotic phenomena in the forced Duffing oscillator. Chaos Solitons Fractals 1, 199–231 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Baltanás, J.P., Trueba, J.L., Sanjuán, M.A.F.: Energy dissipation in nonlinearly damped Duffing oscillator. Physica D 159, 22–34 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Borowiec, M., Litak, G., Syta, A.: Vibration of the Duffing oscillator: effect of fractional damping. Shock Vib. 14, 29–36 (2007)

    Google Scholar 

  6. Duchesne, B., Fischer, C.W., Gray, C.G., Jeffrey, K.R.: Chaos in the motion of an inverted pendulum: an undergraduate laboratory experiment. Am. J. Phys. 59, 987–992 (1991)

    Article  ADS  Google Scholar 

  7. Jones, B.K., Trefan, G.: The Duffing oscillator: a precise electronic analog chaos demonstrator for undergraduate laboratory. Am. J. Phys. 69, 464–469 (2001)

    Article  ADS  Google Scholar 

  8. Zaitsev, S., Almog, R., Shtempluck, O., Buks, E.: Nonlinear damping in nanomechanical beam oscillator. arXiv:cond-mat/0503130

  9. Belhaq, M., Lakrad, F.: Prediction of homoclinic bifurcation: the elliptic averaging method. Chaos Solitons Fractals 11, 2251–2258 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Yan, Z.: A sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations. Chaos Solitons Fractals 16, 291–297 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals 30, 1221–1230 (2006)

    Article  ADS  MATH  Google Scholar 

  12. Estévez, P.G., Kuru, Ş., Negro, J., Nieto, L.M.: Travelling wave solutions of two-dimensional Korteweg-de Vries-Burgers and Kadomtsev-Petviashvili equations. J. Phys. A, Math. Gen. 39, 11441–11452 (2006)

    Article  ADS  MATH  Google Scholar 

  13. Cornejo-Pérez, O., Negro, J., Nieto, L.M., Rosu, H.C.: Travelling-wave solutions for Korteweg-de Vries-Burgers equations through factorization. Found. Phys. 36, 1587–1599 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Estévez, P.G., Kuru, Ş., Negro, J., Nieto, L.M.: Travelling wave solutions of the generalized Benjamin-Bona-Mohany equation. Chaos Solitons Fractals 40, 2031–2040 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Cornejo-Pérez, O.: Traveling wave solutions for some factorized nonlinear PDEs. J. Phys. A, Math. Theor. 42, 035204 (2009)

    Article  ADS  Google Scholar 

  16. Estévez, P.G., Kuru, Ş., Negro, J., Nieto, L.M.: Factorization of a class of almost linear second-order differential equations. J. Phys. A, Math. Theor. 40, 9819–9824 (2007)

    Article  ADS  MATH  Google Scholar 

  17. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  18. Clarkson, P.A.: Painlevé equations nonlinear special functions. J. Comput. Appl. Math. 153, 127–140 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Gettys, W.E., Ray, J.R., Breitenberge, E.: Bohlin’s and other integrals for the damped harmonic oscillator. Am. J. Phys. 49, 162–164 (1981)

    Article  ADS  Google Scholar 

  20. Byrd, P.F., Friedman, D.: Handbook of elliptic integrals for engineers and physicists. Springer, Berlin (1954)

    MATH  Google Scholar 

  21. Whittaker, E.T., Watson, G.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar G. Estévez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez, P.G., Kuru, Ş., Negro, J. et al. Solutions of a Class of Duffing Oscillators with Variable Coefficients. Int J Theor Phys 50, 2046–2056 (2011). https://doi.org/10.1007/s10773-010-0560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0560-6

Keywords

Navigation