Skip to main content
Log in

Trap State Effects in PbS Colloidal Quantum Dot Exciton Kinetics Using Photocarrier Radiometry Intensity and Temperature Measurements

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Nat. Nanotechnol. 4, 40 (2009)

    Article  ADS  Google Scholar 

  2. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J.P. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442, 180 (2006)

    Article  ADS  Google Scholar 

  3. S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Nature 420, 800 (2002)

    Article  ADS  Google Scholar 

  4. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V.I. Klimov, Nano Lett. 5, 1039 (2005)

    Article  ADS  Google Scholar 

  5. K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil, L. Levina, E.H. Sargent, Appl. Phys. Lett. 92, 151115 (2008)

    Article  ADS  Google Scholar 

  6. S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Nat. Mater. 4, 138 (2005)

    Article  ADS  Google Scholar 

  7. J.E. Murphy, M.C. Beard, A.G. Norman, SPh Ahrenkiel, J.C. Johnson, P. Yu, O.I. Mii, R.J. Ellingson, A.J. Nozik, J. Am. Chem. Soc. 128, 3241 (2006)

    Article  Google Scholar 

  8. O. Madelung, Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, 2004)

    Book  Google Scholar 

  9. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)

    Article  ADS  Google Scholar 

  10. D.J. Farrell, Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro, N.J. Ekins-Daukes, Appl. Phys. Lett. 99, 111102 (2011)

    Article  ADS  Google Scholar 

  11. M.S. Gaponenko, A.A. Lutich, N.A. Tolstik, A.A. Onushchenko, A.M. Malyarevich, E.P. Petrov, K.V. Yumashev, Phys. Rev. B 82, 125320 (2010)

    Article  ADS  Google Scholar 

  12. P. Andreakou, M. Brossard, C.Y. Li, M. Bernechea, G. Konstantatos, P.G. Lagoudakis, J. Phys. Chem. C 117, 1887 (2013)

    Article  Google Scholar 

  13. N.B. Pendyala, K.S.R.K. Rao, J. Lumin. 128, 1826 (2008)

    Article  Google Scholar 

  14. A.A. Bakulin, S. Neutzner, H.J. Bakker, L. Ottaviani, D. Barakel, Z. Chen, ACS Nano. 7(10), 8771 (2013)

    Article  Google Scholar 

  15. J. Wang, A. Mandelis, J. Phys. Chem. C 118, 19484 (2014)

    Article  Google Scholar 

  16. J. Wang, A. Mandelis, A. Melnikov, S. Hoogland, E.H. Sargent, J. Phys. Chem. C 117, 23333 (2013)

    Article  Google Scholar 

  17. A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, l Levina, Nat. Nanotechnol. 7, 577 (2012)

    Article  ADS  Google Scholar 

  18. Q. Sun, A. Melnikov, A. Mandelis, in Proceedings of the 40 th IEEE Photovoltaic Specialists Conference, pp. 1860–1865 (2014). doi:10.1109/PVSC.2014.6925287

  19. X. Wen, L.V. Dao, P. Hannaford, J. Phys. D 40, 3573 (2007)

    Article  ADS  Google Scholar 

  20. J. Xia, A. Mandelis, Appl. Phys. Lett. 96, 262112 (1–3) (2010)

  21. J. Xia, A. Mandelis, Appl. Phys. Lett. 90, 062119 (1–3) (2007)

Download references

Acknowledgments

A. Mandelis is grateful to the Natural Sciences and Engineering Research Council (NSERC) for a Discovery grant, to the Canada Foundation for Innovation (CFI) for equipment grants, to the Canada Research Chairs Program, to the Ontario Ministry for Research and Innovation (MRI) for the Inaugural Premier’s Discovery Award in Science and Technology (2007), and to the Chinese Recruitment Program of Global Experts (Thousand Talents). J. Wang is grateful to the National Natural Science Foundation of China (Grant No. 61379013). Sjoerd Hoogland and Edward H. Sargent are acknowledged for CQD sample contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

ICPPP 18 Topical Collection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Mandelis, A., Melnikov, A. et al. Trap State Effects in PbS Colloidal Quantum Dot Exciton Kinetics Using Photocarrier Radiometry Intensity and Temperature Measurements. Int J Thermophys 37, 60 (2016). https://doi.org/10.1007/s10765-016-2065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2065-x

Keywords

Navigation