Skip to main content
Log in

Thermal Conductivity of \(\mathrm{Fe}_{2}\mathrm{O}_{3}\) and \(\mathrm{Fe}_{3}\mathrm{O}_{4}\) Magnetic Nanofluids Under the Influence of Magnetic Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the thermal conductivity of water-based hematite \((\mathrm{Fe}_{2}\mathrm{O}_{3})\) and magnetite \((\mathrm{Fe}_{3}\mathrm{O}_{4})\) nanofluids have been investigated in the absence and presence of a uniform magnetic field. The experiments have been performed in the volume concentration range of 0 % to 4.8 % and the temperature range of \(20\,^{\circ }\mathrm{C}\) to \(60\,^{\circ }\mathrm{C}\). The effects of the particle volume fraction, temperature, and magnetic field strength on the thermal conductivity have been analyzed. Results show that the thermal conductivity of iron oxide nanofluids has a direct relation with the particle volume fraction and temperature, without the presence of a magnetic field. But surprisingly, when the magnetic field is applied, it is observed that the thermal conductivity decreases with increasing temperature and it is also higher for a magnetite nanofluid than for a hematite nanofluid. Moreover, changes in the strength of the magnetic field cause the thermal-conductivity ratio of the ferrofluid with respect to pure water to increase from 15 % to 38.5 % and from 13 % to 175 % for magnetite and hematite nanofluids, respectively. Based on the obtained experimental results, a correlation has been developed for the thermal conductivity of iron oxide magnetic nanofluids as a function of the volume fraction, temperature, and magnetic field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles (American Society of Mechanical Engineers, New York, 1995). OSTI ID: 196525

    Google Scholar 

  2. X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007). doi:10.1016/j.ijthermalsci.2006.06.010

    Article  MATH  Google Scholar 

  3. L. Godaon, B. Raja, D. Mohan Lal, S. Wongwises, Renew. Sustain. Energy Rev. 14, 629 (2010). doi:10.1016/j.rser.2009.10.004

    Article  Google Scholar 

  4. V. Sridhara, L.N. Satapathy, Nanoscale Res. Lett. 6, 456 (2011). doi:10.1186/1556-276X-6-456

    Article  ADS  Google Scholar 

  5. C. Rinaldi, A. Chaves, S. Elborai, M. Zahn, Curr. Opin. Colloid Interface Sci. 10, 141 (2005). doi:10.1016/j.cocis.2005.07.004

    Article  Google Scholar 

  6. H. Zhu, C. Zhang, S. Liu, Y. Tang, Y. Yin, Appl. Phys. Lett. 89, 023123–3 (2006). doi:10.1063/1.2221905

    Article  ADS  Google Scholar 

  7. M. Abareshi, E.K. Goharshadi, S.M. Zebarjad, H.K. Fadafan, A. Youssefi, J. Magn. Magn. Mater. 322, 3895 (2010). doi:10.1016/j.jmmm.2010.08.016

    Article  ADS  Google Scholar 

  8. G. Gutierrez, R. Rodriguez, in ASME 2007 International Mechanical Engineering Congress and Exposition (2007), ASMECP00200704305X001081000001

  9. V.E. Fertman, L.E. Golovicher, N.P. Matusevich, J. Magn. Magn. Mater. 65, 211 (1987). doi:10.1016/0304-8853(87)90034-5

    Article  ADS  Google Scholar 

  10. W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf. A 355, 109 (2010). doi:10.1016/j.colsurfa.2009.11.044

    Article  Google Scholar 

  11. T.K. Hong, H.S. Yang, C.J. Choi, J. Appl. Phys. 97, 064311 (2005). doi:10.1063/1.1861145

    Article  ADS  Google Scholar 

  12. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Int. Commun. Heat Mass Transf. 44, 7 (2013)

    Article  Google Scholar 

  13. L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Adv. Mech. Eng. 36, 65 (2012). doi:10.1155/2012/674947

    Google Scholar 

  14. M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, J. Appl. Phys. 110, 014309 (2011). doi:10.1063/1.3603012

    Article  ADS  Google Scholar 

  15. C. Wei, Z. Nan, X. Wang, Z. Tan, J. Chem. Eng. Data 55, 2524 (2010). doi:10.1021/je900883j

    Article  Google Scholar 

  16. I. Nkurikiyimfura, Y. Wang, Z. Pan, D. Hu, in International Conference on Materials for Renewable Energy & Environment (ICMREE), (Shanghai, 2011), p. 1333. doi:10.1109/ICMREE.2011.5930581

  17. M. Horton, H. Hong, C. Li, B. Shi, G.P. Peterson, S. Jin, J. Appl. Phys. 107, 104320 (2010)

    Article  ADS  Google Scholar 

  18. J. Wensel, B. Wright, D. Thomas, W. Douglas, B. Mannhalter, W. Cross, H.P. Hong, J. Kellar, P. Smith, W. Roy, Appl. Phys. Lett. 92, 023110 (2008). doi:10.1063/1.2834370

    Article  ADS  Google Scholar 

  19. Q. Li, Y. Xuan, J. Wang, Exp. Therm. Fluid Sci. 30, 109 (2005). doi:10.1016/j.expthermflusci.2005.03.021

    Article  Google Scholar 

  20. K. Parekh, H.S. Lee, J. Appl. Phys. 107, 09A310 (2010). doi:10.1063/1.3348387

    Google Scholar 

  21. J. Philip, P.D. Shima, B. Raj, Appl. Phys. Lett. 91, 203108 (2007). doi:10.1063/1.2812699

    Article  ADS  Google Scholar 

  22. A. Gavili, F. Zabihi, T.D. Isfahani, J. Sabbaghzadeh, Exp. Therm. Fluid Sci. 41, 94 (2012). doi:10.1016/j.expthermflusci.2012.03.016

    Article  Google Scholar 

  23. E. Takegoshi, T. Shibata, Y. Hirasawa, A. Kosaka, Netsu Bussei 14, 97 (2000)

    Article  Google Scholar 

  24. R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, J. Magn. Magn. Mater. 149, 1 (1995). doi:10.1016/0304-8853(95)00316-9

    Article  ADS  Google Scholar 

  25. F.P. Incropera, Introduction to Heat Transfer, 3rd edn. (Wiley, New York, 1996)

    Google Scholar 

  26. J.C. Maxwell, On Electricity and Magnetism (Oxford University Press, Oxford, 1881)

    Google Scholar 

  27. D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935). doi:10.1002/andp.19354160705

    Article  Google Scholar 

  28. D.J. Jeffrey, Proc. R. Soc. Lond. Ser. A 335, 355 (1973). doi:10.1098/rspa.1973.0130

    Article  ADS  Google Scholar 

  29. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Phys. Rev. E 76, 061203 (2007). doi:10.1103/PhysRevE.76.061203

    Article  ADS  Google Scholar 

  30. R.E. Rosensweig, Ferrohydrodynamics (Dover Publications, New York, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Goharkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Goharkhah, M., Ashjaee, M. et al. Thermal Conductivity of \(\mathrm{Fe}_{2}\mathrm{O}_{3}\) and \(\mathrm{Fe}_{3}\mathrm{O}_{4}\) Magnetic Nanofluids Under the Influence of Magnetic Field. Int J Thermophys 36, 2720–2739 (2015). https://doi.org/10.1007/s10765-015-1977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1977-1

Keywords

Navigation