Skip to main content
Log in

Effect of Surface Oxidization on the Spectral Normal Emissivity of Aluminum 3A21 at the Wavelength of 1.5 \(\upmu \)m Over the Temperature Range from 800 K to 910 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study explores the dependence of the spectral emissivity on the temperature ranging from 800 K to 910 K for an oxidizing surface of aluminum 3A21. In this experiment, the infrared radiation stemming from the specimen is received by an InGaAs photodiode detector, which operates at the wavelength of 1.5 \(\upmu \)m with a bandwidth of about 20 nm. The temperature of the specimen surface is determined by averaging the two R-type platinum–rhodium thermocouples, which are tightly welded on the specimen surface. The spectral emissivity is reported before the first measurement over the temperature range from 800 K to 910 K. The variation of the spectral emissivity with the heating time is evaluated at a given temperature. The variation of the spectral emissivity with temperature is discussed for a given heating time. Oscillations of the spectral emissivity have been observed, which are affirmed to be connected with the thickness of the oxidization layer on the specimen surface, and formed by the interference effect between the radiation coming from the oxidization layer and the radiation stemming from the substrate. The effect of surface oxidization on the spectral emissivity of aluminum 3A21 is evaluated, and compared with that of SPHC steel. Analytical expressions of the spectral emissivity of aluminum 3A21 versus the temperature are derived at some given heating times. A conclusion is obtained that the experimental results obtained at a given heating time from 800 K to 910 K abide by the same functional form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.-D. Wen, I. Mudawar, Int. J. Heat Mass Transf. 49, 4279 (2006)

    Article  MATH  Google Scholar 

  2. Z.M. Zhang, B.K. Tsai, G. Machin (eds.), Radiometric Temperature Measurements: I. Fundamentals, an Imprint of Elsevier (Academic Press, Amsterdam, 2009)

  3. S. Sade, A. Katzir, J. Appl. Phys. 96, 3507 (2004)

    Article  ADS  Google Scholar 

  4. S. Deemyad, I.F. Silvera, Rev. Sci. Instrum. 79, 086105 (2008)

    Article  ADS  Google Scholar 

  5. V. Schmidt, S. Meitzner, H. Sandring, P. King, in Temperature: Its Measurement and Control in Science and Technology, AIP Conference Proceedings 684, vol. 7, ed. by D.C. Ripple (AIP, Melville, NY, 2003), pp. 723–728

  6. T. Pierre, B. Rémy, A. Degiovanni, J. Appl. Phys. 103, 034904 (2008)

    Article  ADS  Google Scholar 

  7. C.-D. Wen, I. Mudawar, Int. J. Heat Mass Transf. 47, 3591 (2004)

    Article  Google Scholar 

  8. L. Ibos, M. Marchetti, A. Boudenne, S. Datcu, Y. Candau, J. Livet, Meas. Sci. Technol. 17, 2950 (2006)

    Article  ADS  Google Scholar 

  9. T. Furukawa, T. Iuchi, Rev. Sci. Instrum. 71, 2843 (2000)

    Article  ADS  Google Scholar 

  10. L.D. Campo, R.B. Pérez-Sáez, X. Esquisabel, I. Fernández, M.J. Tello, Rev. Sci. Instrum. 77, 113111 (2006)

    Article  ADS  Google Scholar 

  11. D.H. Shi, Q.L. Liu, Z.L. Zhu, J.F. Sun, B.K. Wang, Infrared Phys. Technol. 64, 119 (2014)

    Article  ADS  Google Scholar 

  12. M. Kobayashi, M. Otsuki, H. Sakate, F. Sakuma, A. Ono, Int. J. Thermophys. 20, 289 (1999)

    Article  Google Scholar 

  13. J. Pujana, L.D. Campo, R.B. Pérez-Sáez, M.J. Tello, I. Gallego, P.J. Arrazola, Meas. Sci. Technol. 18, 3409 (2007)

    Article  ADS  Google Scholar 

  14. T. Iuchi, in Temperature: Its Measurement and Control in Science and Technology, AIP Conference Proceedings 684, vol. 7, ed. by D.C. Ripple (AIP, Melville, NY, 2003), pp. 717–722

  15. C.-D. Wen, I. Mudawar, Int. J. Heat Mass Transf. 48, 1316 (2005)

    Article  Google Scholar 

  16. C.-D. Wen, I. Mudawar, Int. Commun. Heat Mass Transf. 33, 1063 (2006)

    Article  Google Scholar 

  17. C.-D. Wen, T.-Y. Chai, Appl. Thermal Eng. 31, 2414 (2011)

    Article  Google Scholar 

  18. C.-D. Wen, T.-Y. Chai, Heat Mass Transf. 47, 847 (2011)

    Article  ADS  Google Scholar 

  19. L. del Campo, R.B. Pérez-Sáez, L. González-Fernández, M.J. Tello, Corros. Sci. 51, 707 (2009)

    Article  Google Scholar 

  20. L. del Campo, R.B. Pérez-Sáez, M.J. Tello, Corros. Sci. 50, 194 (2008)

    Article  Google Scholar 

  21. D.H. Shi, Y.W. Pan, Z.L. Zhu, J.F. Sun, Int. J. Thermophys. 34, 1100 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Natural Science Foundation of China under Grant Nos. 61077073 and 61177092, the Program for Science and Technology Innovation Talents in Universities of Henan Province in China under Grant No. 2008HASTIT008, and the Key Program for Science and Technology Foundation of Henan Province in China under Grant No. 102102210072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Zou, F., Wang, S. et al. Effect of Surface Oxidization on the Spectral Normal Emissivity of Aluminum 3A21 at the Wavelength of 1.5 \(\upmu \)m Over the Temperature Range from 800 K to 910 K. Int J Thermophys 36, 747–759 (2015). https://doi.org/10.1007/s10765-014-1833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1833-8

Keywords

Navigation