Skip to main content

Advertisement

Log in

Spectral Radiative Properties of Two-Dimensional Rough Surfaces

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\boldsymbol{E}}\) :

Electric field (V · m−1)

e n :

Unit normal vector

f r :

Bidirectional reflectance distribution function (sr−1)

\({\boldsymbol{H}}\) :

Magnetic field (A · m−1)

\({\boldsymbol{L}}\) :

Radiance (W · m−2)

\({\boldsymbol{J}}\) :

Electric surface current (A · m−2)

\({\boldsymbol{J_{\rm m}}}\) :

Magnetic surface current (V · m−2)

R :

Reflectance

S :

Area of the integration plane (m2)

s :

Energy flux (W · m−2)

\({\varepsilon}\) :

Permittivity (F · m−1)

\({\eta_{0}}\) :

Intrinsic impedance of free space

\({\theta}\) :

Zenith angle (\({^{\circ}}\))

\({\lambda}\) :

Wavelength (m)

\({\mu}\) :

Permeability (H · m−1)

\({\sigma}\) :

Electrical conductivity; root-mean-square roughness (m)

\({\sigma_{0}}\) :

Cross section per unit-illuminated area

\({\tau}\) :

Correlation length (m)

\({\phi}\) :

Azimuthal angle (\({^{\circ}}\))

\({\omega}\) :

Solid angle (sr)

i:

Incidence

r:

Reflection

References

  1. Chan T.K., Kuga Y., Ishimaru A., Le C.T.C.: IEEE Trans. Geos. Rem. Sens. 34, 674 (1996)

    Article  ADS  Google Scholar 

  2. Beckmann P., Spizzichino A.: The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood (1987)

    Google Scholar 

  3. Hollingsworth D.K., Witte L.C., Hinke J., Hurlbert K.: Appl. Therm. Eng. 26, 2383 (2006)

    Article  Google Scholar 

  4. Rockstuhl C., Lederer F., Bittkau K., Carius R.: Appl. Phys. Lett. 91, 171104 (2007)

    Article  ADS  Google Scholar 

  5. Flory F., Escoubas L., Berginc G.: J. Nanophotonics 5, 052502 (2011)

    Article  ADS  Google Scholar 

  6. Boden S.A., Bagnall D.M.: Prog. Photovolt. Res. Appl. 18, 195 (2010)

    Article  Google Scholar 

  7. Fahr S., Rockstuhl C., Lederer F.: Appl. Phys. Lett. 92, 171114 (2008)

    Article  ADS  Google Scholar 

  8. Rockstuhl C., Fahr1 S., Bittkau K., Beckers T., Carius R., Haug F.J., Soderstrom T., Ballif C., Lederer F.: Opt. Exp. 18, 335 (2010)

    Google Scholar 

  9. Bittkau K., Beckers T., Fahr S., Rockstuhl C., Lederer F., Carius R.: Phys. Stat. Sol. 205, 2766 (2008)

    Article  ADS  Google Scholar 

  10. Rockstuhl C., Lederer F., Bittkau K., Beckers T., Carius R.: Appl. Phys. Lett. 94, 211101 (2009)

    Article  ADS  Google Scholar 

  11. Campbell P., Green M.A.: J. Appl. Phys. 62, 243 (1987)

    Article  ADS  Google Scholar 

  12. Koynov S., Brandt M.S., Stutzmann M.: Appl. Phys. Lett. 88, 203107 (2006)

    Article  ADS  Google Scholar 

  13. Son J., Verma L.K., Danner A.J., Bhatia C.S., Yang H.: Opt. Exp. 19, 35 (2010)

    Article  ADS  Google Scholar 

  14. Fu K., Hsu P.F.: Int. J. Thermophys. 28, 598 (2007)

    Article  ADS  Google Scholar 

  15. Sassi I., Ghmari F., Sifaoui M.S.: J. Opt. Soc. Am. A 26, 480 (2009)

    Article  ADS  Google Scholar 

  16. Shuford K.L., Ratner M.A., Gray S.K., Schatz G.C.: Appl. Phys. B 84, 11 (2006)

    Article  ADS  Google Scholar 

  17. Ghmari F., Sassi I., Sifaoui M.S.: Waves Random Complex Media 15, 469 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Zhu Q.Z., Lee H.J., Zhang Z.M.: J. Thermophys. Heat Transf. 19, 548 (2005)

    Article  Google Scholar 

  19. Fleming J.G., Lin S.Y., Kady I.E., Biswas R., Ho K.M.: Nature 417, 52 (2002)

    Article  ADS  Google Scholar 

  20. Makino T., Wakabayashi H., Okada S.Y.: Heat Transf. Asian Res. 31, 76 (2002)

    Article  Google Scholar 

  21. Hermansson P.: Proc. SPIE 5431, 223 (2004)

    ADS  Google Scholar 

  22. Modest M.F.: Radiative Heat Transfer. McGraw-Hill, New York (1993)

    Google Scholar 

  23. Tang K., Buckius R.O.: Int. J. Heat Mass Transf. 44, 4059 (2001)

    Article  MATH  Google Scholar 

  24. Zhou Y.H., Zhang Z.M.: Trans. ASME 125, 462 (2003)

    Article  Google Scholar 

  25. Leader J.C.: J. Opt. Soc. Am. 69, 610 (1979)

    Article  ADS  Google Scholar 

  26. Nicodemus F.E., Richmond J.C., Hisa J.J.: Geometrical Considerations and Nomenclature for Reflectance, NBS Monograph 160. National Bureau of Standards, Washington, DC (1977)

    Google Scholar 

  27. Zhu Q.Z., Zhang Z.M.: Opt. Eng. 44, 073601 (2005)

    Article  ADS  Google Scholar 

  28. Chen H.B., Chen H., Hu Y.Z., Wang H.: Lubric. Eng. 32, 43 (2007)

    Google Scholar 

  29. Fu K., Hsu P.F.: J. Heat Transf. 129, 71 (2007)

    Article  Google Scholar 

  30. Liu G.P., Han Y.G., Li Q., Xuan Y.M.: Prog. Comput. Fluid Dyn. 9, 247 (2009)

    Article  Google Scholar 

  31. Liu J., Zhang S.J., Chen Y.S.: Num. Heat Transf. B 44, 329 (2003)

    Article  ADS  Google Scholar 

  32. Taflove A., Hagness S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (2000)

    MATH  Google Scholar 

  33. Warnick K.F., Chew W.C.: Waves Random Media 11, R1 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Lee H.J., Chen Y.B., Zhang Z.M.: Int. J. Heat Mass Transf. 49, 4482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Palik E.D.: Handbook of Optical Constants of Solids. Academic Press, San Diego (1985)

    Google Scholar 

  36. Gupta V.K., Jangid R.A.: Indian J. Radio Space Phys. 40, 137 (2011)

    Google Scholar 

  37. Darawankul A., Johnson J.T.: IEEE Trans. Geos. Rem. Sens. 45, 1198 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, Y., Han, Y. & Zhou, Y. Spectral Radiative Properties of Two-Dimensional Rough Surfaces. Int J Thermophys 33, 2291–2310 (2012). https://doi.org/10.1007/s10765-012-1349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1349-z

Keywords

Navigation