Skip to main content
Log in

Drop Calorimetry Studies on 9Cr–1W–0.23V–0.06Ta–0.09C Reduced Activation Steel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The temperature dependence of enthalpy increment (H T H 298) of 9 mass% Cr–1 mass% W–0.23 mass% V–0.06 mass% Ta–0.09 mass% C reduced activation steel has been measured by inverse drop calorimetry in the temperature range 400 K to 1273 K. A critical comparison of present isothermal enthalpy measurements with the results of our previous dynamic calorimetry studies has been made to reveal clearly the occurrence of various diffusional phase transformations that occur at high temperature. These phase changes are marked by the presence of distinct inflections or cusps in an overall nonlinear variation of enthalpy values with temperature. The principal thermal relaxation step of the martensitic microstructure obtained through quenching from the high-temperature γ-austenite phase is observed around 793 K. The ferromagnetic-to-paramagnetic transition of the α-ferrite phase is found to occur at 1015 K. The equilibrium values of γ-austenite start (Ae 1) and finish (Ae 3) temperatures are found to be 1063 K and 1148 K, respectively. A value of 12 J · g−1 has been estimated for Δ°H αγ the latent heat associated with the αγ transformation. The measured enthalpy increment variation of the α-ferrite phase with temperature has been fitted to a suitable empirical function to estimate the temperature-dependent values of the specific heat. A comparison of the drop calorimetry-based indirect estimate of the specific heat with the direct differential scanning calorimetry-based values revealed that the drop calorimetry estimates are systematically lower than its dynamic calorimetry counterpart. This difference is attributed to the fact that, under finite heating rate conditions that are typical of dynamic calorimetry, measurements are made under nonequilibrium conditions. Notwithstanding this limitation, there is a good overall agreement between the two C p values and also among the phase transformation temperatures so that a reliable assessment of thermal properties and phase transformation characteristics of reduced activation steel can be determined by a combined analysis of the results of drop and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharafat S., Odette G.R., Blanchard J.: J. Nucl. Mater. 386–388, 896 (2009)

    Article  Google Scholar 

  2. Danon A., Servant C.: J. Nucl. Mater. 321, 8 (2003)

    Article  ADS  Google Scholar 

  3. Klueh R.L.: Int. Mater. Rev. 50, 287 (2005)

    Article  Google Scholar 

  4. V.K. Sikka, C.T. Ward, K.C. Thomas, Ferritic steels for high temperature applications, in Proceedings of the ASM Conference on Production, Fabrication, Properties and Applications of Ferritic Steels for High Temperature Applications (ASM, Metals Park, OH, 1983), pp. 65–84

  5. S.J. Sanderson, Interrelationships Between Mechanical Properties and Microstructure in a 9Cr 1Mo Steel, in Ferritic Steels for Fast Reactor Steam Generators (BNES, London, 1978), pp. 120–127

  6. J. Orr, S.J. Sanderson, An examination of the potential of 9Cr1Mo steel as thick section tube plates in fast reactors, in Topical Conference on Ferritic Alloys for Use in Nuclear Technologies, ed. by J.W. Davis, D.J. Michel (Metal Society of AIME, Warrendale, PA, 1984), pp. 261–267

  7. W.L. Bell, T. Lauritzen, S. Vaidyanathan, Ferritics for breeder reactor In-core applications: a survey of alloys, properties and microstructure, in Topical Conference on Ferritic Alloys for Use in Nuclear Technologies, ed. by J.W. Davis, D.J. Michel (Metal Society of AIME, Warrendale, PA, 1984), pp. 113–124

  8. Tamura M., Haruguchi Y., Yamashita M., Nagaoka Y., Ohinata K., Ohnishi K., Iitoh E., Ito H., Shinozuka K., Esaka H.: ISIJ Int. 46, 1693 (2006)

    Article  Google Scholar 

  9. Hald J., Korcakova L.: ISIJ Int. 43, 420 (2003)

    Article  Google Scholar 

  10. Finkler H., Schirra M.: Steel Res. 61, 328 (1996)

    Google Scholar 

  11. Klotz U.E., Solenthaler C., Uggowitzer D.J.: Mater. Sci. Eng. A 476, 186 (2008)

    Article  Google Scholar 

  12. Abe F.: Sci. Tech. Adv. Mater. 9, 1 (2008)

    Article  Google Scholar 

  13. Foldyna V., Purmensky J., Kuban Z.: ISIJ Int. 41, S81 (2001)

    Article  Google Scholar 

  14. Cerjak H., Hofer P., Schaffernak B.: ISIJ Int. 39, 874 (1999)

    Article  Google Scholar 

  15. Klueh R.L., Maziasz P.J.: J. Nucl. Mater. 155–157, 602 (1988)

    Article  Google Scholar 

  16. Raju S., Jeyaganesh B., Rai A.K., Mythili R., Saroja S., Mohandas E., Vijayalakshmi M., Rao K.B.S., Raj B.: J. Nucl. Mater. 389, 385 (2009)

    Article  ADS  Google Scholar 

  17. M.J. Richardson, Application of differential scanning calorimetry to the measurement of specific heat. Compendium of Thermophysical Property Measurement Techniques, ed. by K.D. Maglic, A. Cezairliyan, V.E. Peletsky, vol. 2 (Plenum Press, New York, 1992), p. 519

  18. Zhu Y., Devletian J.: J. Mater. Sci. 26, 6218 (1991)

    Article  ADS  Google Scholar 

  19. Raju S., Jeyaganesh B., Banerjee A., Mohandas E.: Mater. Sci. Eng. A 465, 29 (2007)

    Article  Google Scholar 

  20. Banerjee A., Raju S., Divakar R., Mohandas E.: Int. J. Thermophys. 28, 97 (2007)

    Article  Google Scholar 

  21. A. Banerjee, S. Raju, R. Divakar, E. Mohandas, Mater. Lett. 59, 1219 (2005) 2

    Google Scholar 

  22. Chase, M. (eds): NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data Monograph 9, 4th edn. ACS, Washington, DC (1998)

    Google Scholar 

  23. Vitek J.M., Klueh R.L.: Metall. Trans. 14, 1047 (1983)

    Google Scholar 

  24. Karmazin L.: Mater. Sci. Eng. 100, 201 (1988)

    Article  Google Scholar 

  25. Alvarez L.F., Garcia C., Lopez V.: ISIJ Int. 41, 599 (2001)

    Article  Google Scholar 

  26. Schaffernak B.C., Cerjak H.H.: Calphad 25, 241 (2001)

    Article  Google Scholar 

  27. Gmelin E., Sarge S.M.: Thermochim. Acta 347, 9 (2000)

    Article  Google Scholar 

  28. Jeyaganesh B., Raju S., Mohandas E., Murugesan S., Vijayalakshmi M.: Int. J. Thermophys. 30, 619 (2009)

    Article  Google Scholar 

  29. Chuang Y., Schmid R., Chang Y.A.: Metall. Trans. 16, 153 (1985)

    Google Scholar 

  30. Tavassoli A.-A.F., Alamo A., Bedel L., Forest L., Gentzbittel J.M., Rensman J.W., Diegele E., Lindau R., Schirra M., Schmitt R., Schneider H.C., Petersen C., Lancha A.M., Fernandez P., Filacchioni G., Maday M.F., Mergia K., Boukos N., Baluc , Spatig P., Alves E., Lucon E.: J. Nucl. Mater. 329–333, 257 (2004)

    Article  Google Scholar 

  31. Tavassoli A.-A.F., Rensman J.W., Schirra M., Shiba K.: Fusion Eng. Des. 61–62, 617 (2002)

    Article  Google Scholar 

  32. Mergia K., Boukos N.: J. Nucl. Mater. 373, 1 (2008)

    Article  ADS  Google Scholar 

  33. Normanton A.S., Moore R.H., Argent B.B.: Met. Sci. 10, 207 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, S., Jeya Ganesh, B., Rai, A.K. et al. Drop Calorimetry Studies on 9Cr–1W–0.23V–0.06Ta–0.09C Reduced Activation Steel. Int J Thermophys 31, 399–415 (2010). https://doi.org/10.1007/s10765-010-0720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0720-1

Keywords

Navigation