Skip to main content
Log in

Examining Technology-Mediated Communication Using a Commognitive Lens: the Case of Touchscreen-Dragging in Dynamic Geometry Environments

International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

In this paper, I introduce Sfard’s discursive framework to examine secondary-school calculus students’ communication during exploratory activities mediated by the use of touchscreen dynamic geometry environments (DGEs). Six pairs of secondary-school students participated in an open-ended task to explore calculus relationships using touchscreen-DGEs. Qualitative data capturing the students’ linguistic communication (speech) and hand movements (gestures and dragging) were analysed when the students interacted with the touchscreen-DGEs used during the task. Findings suggest that new forms of communication were mobilised through the act of dragging on a touchscreen-DGE. In particular, routines for comparing, reasoning, conjecturing and verifying emerged within the use of the haptic DGE interface. In this paper, potentials of the touchscreen-DGEs in facilitating new forms of gestural thinking, as well as theoretical and methodological considerations that recognise the changing ways in which the hand and media interact, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. Transcript conventions used in this study: S-ing = Speaking; G-ing = Gesturing; D-ing = Dragging; Underlined transcript = utterance spoken simultaneously with gesturing; Double-underlined transcript = utterance spoken simultaneously with dragging; Question mark (?) = utterance that ends with a high intonation

References

  • Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en Matemática Educativa, 9, 267–299.

    Google Scholar 

  • Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. ZDM—The International Journal of Mathematics Education, 42(7), 715–731.

    Article  Google Scholar 

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM—Zentralblatt fur Didaktik der Mathematik, 34(2), 66–72.

    Article  Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (2nd ed., pp. 720–749). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51-52, 45–65.

    Article  Google Scholar 

  • Chen, C. L., & Herbst, P. (2012). The interplay among gestures, discourse, and diagrams in students’ geometrical reasoning. Educational Studies in Mathematics, 83, 285–307.

    Article  Google Scholar 

  • Davis, R. B. (1984). Learning mathematics: The cognitive science approach to mathematics education. Norwood, NJ: Ablex Pub. Corp.

  • Edwards, L., Ferrara, F., & Moore-Russo, D. (2014). Emerging perspectives on gesture and embodiment in mathematics. Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333.

    Article  Google Scholar 

  • de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Gee, J. P. (1999). An introduction to discourse analysis: Theory and method. New York, NY: Routledge.

    Google Scholar 

  • Güçler, B. (2015). Making implicit metalevel rules of the discourse on function explicit topic of reflection in the classroom to foster student learning. Educational Studies in Mathematics, 91(3), 375–393.

    Article  Google Scholar 

  • Gücler, B., Hegedus, S., Robidoux, R., & Jackiw, N. (2013). Investigating the mathematical discourse of young learners involved in multi-modal mathematical investigations: The case of haptic technologies. In D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual mathematics and Cyberlearning (pp. 97–118). New York, NY: Springer.

    Chapter  Google Scholar 

  • Hegedus, S., & Tall, D. (2016). Foundations for the future: The potential of multimodal technologies for learning mathematics. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 543–562). New York, NY: Routledge.

    Google Scholar 

  • Hegedus, S., Laborde, C., Brady, C., Dalton, S., Siller, H. S., Tabach, M., . . . Moreno-Armella, L. (2017). Uses of Technology in upper secondary mathematics education: ICME-13 Topical Surveys. Cham, Switzerland: Springer.

  • Hoyles, C., Noss, R., Vahey, P., & Roschelle, J. (2013). Cornerstone mathematics: Designing digital technology for teacher adaptation and scaling. ZDM, 45(7), 1057–1070.

    Article  Google Scholar 

  • Jackiw, N. (2011). SketchExplorer [computer program]. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Kieran, C., Forman, E., & Sfard, A. (Eds.). (2002). Learning discourse: Discursive approach to research in mathematics education. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Leung, F. K. S. (2013). Technology in the Mathematics Curriculum. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 517–524). New York, NY: Springer.

    Google Scholar 

  • Leung, A. (2017). Exploring techno-pedagogic task design in the mathematics classroom. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks (pp. 3–16). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Moreno-Armella, L., & Brady, C. (2018). Technological supports for mathematical thinking and learning: Co-action and designing to democratize access to powerful ideas. In L. Ball, P. Drijvers, S. Ladel, H. S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in upper secondary mathematics education: ICME-13 Monographs (pp. 339–350). Cham, Switzerland: Springer.

  • Moreno-Armella, L., & Hegedus, S. J. (2009). Co-action with digital technologies. ZDM—The International Journal of Mathematics Education, 41(4), 505–519.

    Article  Google Scholar 

  • Nachilieli, T., & Tabach, M. (2012). Growing mathematical objects in the classroom—the case of function. International Journal of Educational Research, 51-52, 10–27.

    Article  Google Scholar 

  • Nardi, E., Ryve, A., Stadler, E., & Viirman, O. (2014). Commognitive analyses of the learning and teaching of mathematics at university level: The case of discursive shifts in the study of Calculus. Research in Mathematics Education, 16(2), 182–198.

    Article  Google Scholar 

  • Ng, O.-L. (2015). The interplay between language, gestures, dragging, and diagrams in bilingual learners' mathematical communications. Educational Studies in Mathematics, 91(3), 307-326. https://doi.org/10.1007/s10649-015-9652-9.

  • Ng, O.-L. (2016). Comparing calculus communication across static and dynamic environments using a multimodal approach. Digital Experiences in Mathematics Education, 2(2), 115-141. https://doi.org/10.1007/s40751-016-0014-8.

  • Núñez, R. (2003). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In R. Hersh (Ed.), 18 Unconventional essays on the nature of mathematics (pp. 160–181). New York, NY: Springer.

    Google Scholar 

  • Radford, L. (2013). Sensuous cognition. In D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual mathematics and cyberlearning (pp. 141–162). New York, NY: Springer.

    Chapter  Google Scholar 

  • Ryve, A. (2011). Discourse research in mathematics education: A critical evaluation of 108 journal articles. Journal for Research in Mathematics Education, 42(2), 167–198.

    Article  Google Scholar 

  • Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language, 50, 696–735.

    Article  Google Scholar 

  • Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Science, 16(4), 567–615.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourse, and mathematizing. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Sfard, A. (2009). What’s all the fuss about gestures? A commentary. Educational Studies in Mathematics, 70, 191–200.

    Article  Google Scholar 

  • Sfard, A. (2013). Discursive research in mathematics education: Conceptual and methodological issues. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th conference of the International Group for the Psychology of mathematics education (Vol. 1, pp. 157–161). Kiel, Germany: PME.

    Google Scholar 

  • Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: Rethinking gesture with new multitouch digital technologies. Gesture, 14(3), 351–374.

    Article  Google Scholar 

  • Sinclair, N., & Jackiw, N. (2014). TouchCounts [iPad application]. Retrieved from https://itunes.apple.com/us/app/touchcounts/id897302197?mt=8.

  • Sinclair, N. & Robutti, O. (2013). Teaching practices in digital environments. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 598–601). Dordrecht, The Netherlands: Springer.

  • Thomas, K. (1995). The fundamental theorem of calculus: An investigation into students’ constructions (Unpublished doctoral dissertation). West Lafayette, IN: Purdue University.

    Google Scholar 

  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 275–298.

    Article  Google Scholar 

  • Vygotsky, L. (1978). Mind in society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wang, S., & Kinzel, M. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele Level 3. Research in Mathematics Education, 16(3), 288–305.

    Article  Google Scholar 

  • Weber, E., Tallman, M., Byerley, C., & Thompson, P. W. (2012). Introducing derivative via the calculus triangle. Mathematics Teacher, 104(4), 274–278.

    Article  Google Scholar 

  • Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wittgenstein, L. (1953). Philosophical investigations (G.E.M. Anscombe, Trans.). Oxford, England: Basil Blackwell.

  • Yerushalmy, M., & Swidan, O. (2012). Signifying the accumulation graph in a dynamic and multi-representation environment. Educational Studies in Mathematics, 80(3), 287–306.

    Article  Google Scholar 

  • Yoon, C., Thomas, M. O., & Dreyfus, T. (2011). Grounded blends and mathematical gesture spaces: Developing mathematical understandings via gestures. Educational Studies in Mathematics, 78(3), 371–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oi-Lam Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, OL. Examining Technology-Mediated Communication Using a Commognitive Lens: the Case of Touchscreen-Dragging in Dynamic Geometry Environments. Int J of Sci and Math Educ 17, 1173–1193 (2019). https://doi.org/10.1007/s10763-018-9910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-018-9910-2

Keywords

Navigation