Skip to main content
Log in

Differences in Hydration Structure Around Hydrophobic and Hydrophilic Model Peptides Probed by THz Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have recorded the THz spectra of the peptides NALA and NAGA as well as the amino acid leucine as model systems for hydrophobic and hydrophilic hydration. The spectra were recorded as a function of temperature and concentration and were analyzed in terms of a principal component analysis approach. NAGA shows positive absorptions with an increasing effective absorption coefficient for increasing concentrations. We conclude that NAGA due to its polar and hydrophilic structure does not have a significant influence on the surrounding water network, but is instead integrated into the water network forming a supramolecular complex. In contrast, for NALA, one hydrogen atom is substituted by a hydrophobic iso-butyl chain. We observe for NALA a decrease in absorption below 1.5 THz and a nonlinearity with a turning point around 0.75 M. Our measurements indicate that the first hydration shell of NALA is still intact at 0.75 M (corresponding to 65 water molecules per NALA). However, for larger concentrations the hydration shells can overlap, which explains the nonlinearity. For leucine, the changes in the spectrum occur at smaller concentrations. This might indicate that leucine exhibits a long-range effect on the solvating water network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acbas, G., Niessen, K. A., Snell, E. H. & Markelz, A. G. Optical measurements of long-range protein vibrations. Nat. Commun. 5, 1–7 (2014).

    Article  Google Scholar 

  2. Born, B., Weingärtner, H., Bründermann, E. & Havenith, M. Solvation dynamics of model peptides probed by terahertz spectroscopy. observation of the onset of collective network motions. J. Am. Chem. Soc. 131, 3752–3755 (2009).

    Article  Google Scholar 

  3. Born, B. & Havenith, M. Terahertz dance of proteins and sugars with water. in Journal of Infrared, Millimeter, and Terahertz Waves 30, 1245–1254 (2009).

  4. Heugen, U. et al. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 103, 12301–6 (2006).

    Article  Google Scholar 

  5. Born, B., Kim, S. J., Ebbinghaus, S., Gruebele, M. & Havenith, M. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 141, 161–173 (2009).

    Article  Google Scholar 

  6. Xu, Y. & Havenith, M. Perspective: watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy. J. Chem. Phys. 143, 170901 (2015).

    Article  Google Scholar 

  7. Heyden, M. et al. Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc. 130, 5773–5779 (2008).

    Article  Google Scholar 

  8. Heyden, M. & Havenith, M. Combining THz spectroscopy and MD simulations to study protein-hydration coupling. Methods 52, 74–83 (2010).

    Article  Google Scholar 

  9. Fogarty, A. C. & Laage, D. Water dynamics in protein hydration shells: the molecular origin of the dynamical perturbation. J. Phys. Chem. B 118, 7715–7729 (2014).

    Article  Google Scholar 

  10. Laage, D., Elsaesser, T. & Hynes, J. T. Perspective: structure and ultrafast dynamics of biomolecular hydration shells. Struct. Dyn. 4, 44018 (2017).

    Article  Google Scholar 

  11. Nibali, V. C. & Havenith, M. New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 136, 12800–12807 (2014).

    Article  Google Scholar 

  12. Heyden, M. & Tobias, D. J. Spatial dependence of protein-water collective hydrogen-bond dynamics. Phys. Rev. Lett. 111, 218101 (2013).

    Article  Google Scholar 

  13. Rezus, Y. L. A. & Bakker, H. J. Observation of immobilized water molecules around hydrophobic groups. Phys. Rev. Lett. 99, 148301 (2007).

    Article  Google Scholar 

  14. Funkner, S., Havenith, M. & Schwaab, G. Urea, a structure breaker? Answers from THz absorption spectroscopy. J. Phys. Chem. B 116, 13374–13380 (2012).

    Article  Google Scholar 

  15. Murarka, R. K. & Head-Gordon, T. Dielectric relaxation of aqueous solutions of hydrophilic versus amphiphilic peptides. J. Phys. Chem. B 112, 179–186 (2008).

    Article  Google Scholar 

  16. Head-Gordon, T., Sorenson, J. M., Pertsemlidis, A. & Glaeser, R. M. Differences in hydration structure near hydrophobic and hydrophilic amino acids. Biophys. J. 73, 2106–2115 (1997).

    Article  Google Scholar 

  17. Murarka, R. K. & Head-Gordon, T. Single particle and collective hydration dynamics for hydrophobic and hydrophilic peptides. J. Chem. Phys. 126, 215101 (2007).

    Article  Google Scholar 

  18. Niehues, G., Heyden, M., Schmidt, D. A. & Havenith, M. Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discuss. 150, 193–207 (2011).

    Article  Google Scholar 

  19. Comez, L. et al. More is different: experimental results on the effect of biomolecules on the dynamics of hydration water. J. Phys. Chem. Lett. 4, 1188–1192 (2013).

    Article  Google Scholar 

  20. Sasisanker, P. & Weingärtner, H. Hydration dynamics of water near an amphiphilic model peptide at low hydration levels: a dielectric relaxation study. ChemPhysChem 9, 2802–2808 (2008).

    Article  Google Scholar 

  21. Head-Gordon, T. Is water structure around hydrophobic groups clathrate-like? Proc. Natl. Acad. Sci. U. S. A. 92, 8308–8312 (1995).

    Article  Google Scholar 

  22. Russo, D., Murarka, R. K., Copley, J. R. D. & Head-Gordon, T. Molecular view of water dynamics near model peptides. J. Phys. Chem. B 109, 12966–75 (2005).

    Article  Google Scholar 

  23. Pertsemlidis, A., Saxena, A. M., Soper, A. K., Head-Gordon, T. & Glaeser, R. M. Direct evidence for modified solvent structure within the hydration shell of a hydrophobic amino acid. Proc. Natl. Acad. Sci. U. S. A. 93, 10769–10774 (1996).

    Article  Google Scholar 

  24. Gallagher, K. R. & Sharp, K. A. A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc. 125, 9853–9860 (2003).

    Article  Google Scholar 

  25. Laage, D. & Hynes, J. T. On the molecular mechanism of water reorientation. J. Phys. Chem. B 112, 14230–14242 (2008).

    Article  Google Scholar 

  26. Laage, D. & Hynes, JT. A molecular jump mechanism of water reorientation. Science (80). 311, 832–835 (2006).

    Article  Google Scholar 

  27. Sharp, K. A., Madan, B., Manas, E. & Vanderkooi, J. M. Water structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy. J. Chem. Phys. 114, 1791–1796 (2001).

    Article  Google Scholar 

  28. Sharp, K. A. Water: structure and properties. in eLS (2001).

  29. Sharma, V., Böhm, F., Schwaab, G. & Havenith, M. The low frequency motions of solvated Mn(II) and Ni(II) ions and their halide complexes. Phys. Chem. Chem. Phys. 16, 25101–25110 (2014).

    Article  Google Scholar 

  30. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987).

    Article  Google Scholar 

  31. Abdi, H. & Williams, L. J. Principal component analysis. WIREs Comp Stat 2, 433–459 (2010).

    Article  Google Scholar 

  32. Kessler, W. Multivariate Datenanalyse. (2007).

  33. Decka, D., Schwaab, G. & Havenith, M. A THz/FTIR fingerprint of the solvated proton: evidence for Eigen structure and Zundel dynamics. Phys. Chem. Chem. Phys. 17, 11898–11907 (2015).

    Article  Google Scholar 

  34. Böhm, F., Schwaab, G. & Havenith, M. Mapping hydration water around alcohol chains by THz calorimetry. Angew. Chemie - Int. Ed. 56, 9981–9985 (2017).

    Article  Google Scholar 

  35. Sun, J. et al. Understanding THz spectra of aqueous solutions: glycine in light and heavy water. J. Am. Chem. Soc. 136, 5031–5038 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Savolainen for helpful discussions when setting up the THz—time-domain laser system and G. Schwaab for his support when analysing the data.

Funding

This work is part of the Cluster of Excellence Ruhr Explores Solvation (RESOLV) (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Havenith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirtz, H., Schäfer, S., Hoberg, C. et al. Differences in Hydration Structure Around Hydrophobic and Hydrophilic Model Peptides Probed by THz Spectroscopy. J Infrared Milli Terahz Waves 39, 816–827 (2018). https://doi.org/10.1007/s10762-018-0478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0478-2

Keywords

Navigation