Skip to main content
Log in

A Modified 8f Geometry with Reduced Optical Aberrations for Improved Time Domain Terahertz Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present a modified 8f geometry for time domain terahertz (THz) spectroscopy (TDTS) experiments. We show, through simulations and data, that a simple rearranging of the off-axis parabolic mirrors, which are typically used to focus and direct THz radiation in TDTS experiments, results in a nearly 40 % reduction in the THz focal spot diameter. This effect stems from significant reduction of the principle optical aberrations which are enhanced in the conventional 8f geometry but partially compensated in the modified 8f experimental setup. We compare data from our home-built TDTS spectrometer in the modified 8f geometry to that of previous iterations that were designed in the conventional 8f geometry to demonstrate the effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. C. Nuss and J. Orenstein, Terahertz Time Domain Spectroscopy, vol. 74 (Springer Berlin Heidelberg, 1998).

  2. M. Tonouchi, Nat. Photonics 1, 97 (2007).

  3. P. F. Taday, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 362, 351 (2004), ISSN 1364-503X.

  4. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).

  5. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, Applied Physics Letters 78, 835 (2001).

  6. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).

  7. S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, Journal of Biological Physics 29, 247 (2003), ISSN 1573-0689.

  8. W. L. Chan, J. Deibel, and D. M. Mittleman, Reports on Progress in Physics 70, 1325 (2007).

  9. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Opt. 41, 2074 (2002).

  10. M. K. Choi, A. Bettermann, and D. W. van der Weide, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 362, 337 (2004), ISSN 1364-503X.

  11. M. Leahy-Hoppa, M. Fitch, X. Zheng, L. Hayden, and R. Osiander, Chemical Physics Letters 434, 227 (2007), ISSN 0009-2614.

  12. R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, Nature 423, 734 (2003).

  13. J. N. Heyman, R. Kersting, and K. Unterrainer, Applied Physics Letters 72, 644 (1998).

  14. J. Corson, R. Mallozzi, J. Orenstein, N. Eckstein, and I. Bozovic, Nature 398, 221 (1999).

  15. L. S. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, Nature Phys. 7, 298 (2001).

  16. C. M. Morris, R. Valdés Aguilar, A. Ghosh, S. M. Koohpayeh, J. Krizan, R. J. Cava, O. Tchernyshyov, T. M. McQueen, and N. P. Armitage, Phys. Rev. Lett. 112, 137403 (2014).

  17. N. J. Laurita, J. Deisenhofer, L. Pan, C. M. Morris, M. Schmidt, M. Johnsson, V. Tsurkan, A. Loidl, and N. P. Armitage, Phys. Rev. Lett. 114, 207201 (2015).

  18. L. Pan, N. J. Laurita, A. Kate, B. D. Gaulin, and N. P. Armitage, Nature Phys. (2015).

  19. R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, et al., Phys. Rev. Lett. 108, 087403 (2012).

  20. L. Wu, M. Brahlek, R. V. Aguilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, Nature Phys. 9, 410 (2013).

  21. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 107, 136803 (2011).

  22. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Applied Physics Letters 98 (2011).

  23. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, New Journal of Physics 15 (2013).

  24. M. Shalaby and C. P. Hauri, Nature Communications 6 (2014).

  25. M. T. Reiten, S. A. Harmon, and R. A. Cheville, J. Opt. Soc. Am. B 20, 2215 (2003).

  26. V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, AIP Advances 5, 097203 (2015).

  27. C. Brückner, G. Notni, and A. Tnnermann, Optik - International Journal for Light and Electron Optics 121, 113 (2010), ISSN 0030-4026.

  28. P. Arguijo and M. S. Scholl, Appl. Opt. 42, 3284 (2003).

  29. K. Uehara and H. Kikuchi, Appl. Opt. 25, 4514 (1986).

  30. K. Tanaka, N. Saga, and H. Mizokami, Appl. Opt. 24, 1102 (1985).

Download references

Acknowledgments

The THz instrumentation development was funded by the Gordon and Betty Moore Foundation through Grant GBMF2628 to NPA and through the ARCS Foundation to NJL. The authors would like to thank C. M. Morris, M. Neshat, and LiDong Pan for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Laurita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurita, N.J., Cheng, B., Barkhouser, R. et al. A Modified 8f Geometry with Reduced Optical Aberrations for Improved Time Domain Terahertz Spectroscopy. J Infrared Milli Terahz Waves 37, 894–902 (2016). https://doi.org/10.1007/s10762-016-0281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0281-x

Keywords

Navigation