Skip to main content
Log in

All-Metal-Waveguide Power Divider with High Power-Combining Efficiency

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A four-way all-metal-waveguide power divider has been presented and analyzed in this paper. A metal matching cylinder and a transition waveguide are applied to implement wide impedance matching from the input port to the four output ports. A simple equivalent-circuit model for this power-dividing structure has been developed. Moreover, the theoretical power-handling capability of the presented power-dividing structure has also been investigated. To verify the validity of the proposed structure, a four-way power divider at W-band has been fabricated with conventional machining. The measured return loss is greater than 14.5 dB from 82 GHz to 107 GHz. The measured insertion loss of the four-way all-metal-waveguide power divider is about 6.5 dB, which corresponds to a power-combining efficiency of 89 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Song, S. Hu, Y. Mo and Y. Fan, “Millileter-wave power-combining amplifier using a broadband waveguide combiner,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, no. 12, pp. 1211-1220, 2012.

    Article  Google Scholar 

  2. L. W. Epp, D. J. Hoppe, A. R. Khan, and S. L. Stride, “A high-power Ka-band (31–36 GHz) solid-state amplifier based on low-loss corporate waveguide combining,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1899–1908, 2008.

    Article  Google Scholar 

  3. X. Jiang, S. C. Ortiz, and A. Mortazawi, “A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide circuit,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 633–639, 2004.

    Article  Google Scholar 

  4. F. Zhang, K. Song, G. Li, and M. Zhao, “Sub-THz four-way waveguide power combiner with low insertion loss,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. 5, pp. 451–457, 2014.

    Article  Google Scholar 

  5. D. S. Eom, J. Byun, H. Y. Lee, “Multilayer substrate integrated waveguide four-way out-of-phase power divider,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3469 – 3476, 2009.

    Article  Google Scholar 

  6. K. Song, Y. Fan, Y. Zhang, “Eight-way substrate integrated waveguide power divider with low insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1473 – 1477, 2008.

    Article  Google Scholar 

  7. K. Song, Y. Fan, Z. He, “Broadband radial waveguide spatial combiner,” IEEE Microw. Wireless. Compon. Lett., vol. 18, no. 2, pp. 73 – 75, 2008.

    Article  Google Scholar 

  8. A. E. Fathy, S. W. Lee, D. Kalokitis, “A simplified design approach for radial power combiners,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 247 – 255, 2006.

    Article  Google Scholar 

  9. K. Song, F. Zhang, S. Hu and Y. Fan, “Ku-band 200-W pulsed power amplifier based on waveguide spatially power-combining technique for industrial applications”, IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4274–4280, 2014.

    Article  Google Scholar 

  10. K. Song, Q. Xue, “Planar probe coaxial-waveguide power combiner/divider,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 11, pp. 2761–2767, 2009.

    Article  Google Scholar 

  11. K. Song, Y. Fan, Q. Xue, “Millimeter-wave power amplifier based on coaxial-waveguide power-combining circuits,” IEEE Microw. Wireless Comp. Lett., vol. 20, no. 1, pp. 46–48, 2010.

    Article  Google Scholar 

  12. P. Jia, L. Y. Chen, A. Alexanian, R. A. York, “Multioctave spatial power combining in oversized coaxial waveguide,”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1355–1360, 2002.

    Article  Google Scholar 

  13. K. Song, S. Hu, Q. Xue, and Y. Fan, “Compact U-band 32-way ring-cavity spatial power combiner with low insertion loss”, Electron. Lett., vol. 48, no. 18, pp. 1133–1134, 2012.

    Article  Google Scholar 

  14. K. Song, Q. Xue, “Ultra-wideband (UWB) ring-cavity multiple-Way parallel power divider,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4737-4745, 2013.

    Article  Google Scholar 

  15. D. M. Pozar, Microwave Engineering, Wiley, New York, USA, 2004.

    Google Scholar 

  16. N. Marcuvitz, Waveguide Handbook. McGraw-Hill, New York, USA, 1986.

    Book  Google Scholar 

  17. K. Song, Y. Fan and X. Zhou, “Broadband millimetre-wave passive spatial combiner based on coaxial waveguide,” IET Microw. Antennas Propag., vol. 3, no. 4, pp. 607–613, 2009.

    Article  Google Scholar 

  18. J. Y. Ding, Q. Y. Wang, Y. B. Zhang and C. L. Wang, “A novel five-port waveguide power divider,” IEEE Microw. Wireless Comp. Lett., vol. 24, no. 4, pp. 224–226, 2014.

    Article  MathSciNet  Google Scholar 

  19. X. Q. Xie, C. G. Zhao and R. Diao, “A millimeter-wave power combining amplifier based on a waveguide-microstrip E-plane dual-probe four-way power combining network,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 29, no. 9, pp. 862-870, 2008.

    Article  Google Scholar 

  20. Q. X. Chu, Q. S. Wu and D. Y. Mo, “A Ka-band E-plane waveguide magic-T with coplanar arms”, IEEE Trans. Microw. Theory Tech., vol. 62, no. 11, pp. 2673–2679, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

The work for this grant was supported by National Natural Science Foundation of China (Grant No. 61271026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Song, K., Fan, M. et al. All-Metal-Waveguide Power Divider with High Power-Combining Efficiency. J Infrared Milli Terahz Waves 37, 258–266 (2016). https://doi.org/10.1007/s10762-015-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0228-7

Keywords

Navigation