Skip to main content
Log in

Review of terahertz technology development at INO

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. “Advanced Photonix, Inc. Announces Terahertz Phase II Contract Award,” (2007). Retrieved April 1, 2014 from http://advancedphotonix.investorroom.com/index.php?s=43&item=46

  2. “Terahertz in the Pharmaceutical Industry,” (2013). Retrieved April 1, 2014 from http://www.teraview.com/applications/pharmaceutical/

  3. D. Zimdars, et al., “Time Domain Terahertz Imaging of Threats in Luggage and Personnel,” Journal of High Speed Electronics and Systems, vol. 17, pp. 271–281, 2007.

    Article  Google Scholar 

  4. J. Oden et al.,“Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature”, Optics Express, Vol. 21, Issue 4, pp. 4817–4825, 2013. 10.1364/OE.21.004817

    Article  Google Scholar 

  5. J. Grant et al., “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer”, Laser & Photonics Reviews Volume 7, Issue 6, pages 1043–1048, 2013. DOI: 10.1002/lpor.201300087

    Article  MathSciNet  Google Scholar 

  6. H. Oulachgar, et al., “Development of MEMS microbolometer detector for THz applications”, 35th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2010, 5612408, 2010.

  7. T. Pope, et al., “Uncooled detector, optics, and camera development for THz imaging”, Proc. of SPIE, Vol. 7311, 73110L, 2009.

    Article  Google Scholar 

  8. F. J. González, et al., “Antenna-Coupled Infrared Detectors for Imaging Applications”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, 1, pp. 117–120, 2005.

    Article  Google Scholar 

  9. H. Oulachgar, et al., “Design and Microfabrication of Frequency Selective Uncooled Microbolometer Focal Plane Array for Terahertz Imaging”, Proceedings of the 38th conference of IRMMW-THz, Mainz-Germany, 2013.

  10. H. Oulachgar, et al., “Optimization of design and microfabrication of metamaterial-based absorbers for terahertz microbolometers”, Proc. of 39th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz, 2014.

  11. C. Chevalier, et al., “Introducing a 384x288 pixel terahertz camera core”, Proc. of SPIE, Vol. 8624, 86240F, 2013.

    Article  Google Scholar 

  12. L. Le Noc, et al., “Modular infrared 640 × 480 pixel camera core for rapid device integration,” Proc. SPIE 7298, 7298–27, 2009.

    Google Scholar 

  13. L. Le Noc, et al., “Towards a very high-resolution infrared camera core,” Proc. SPIE 8012, 80123P, 2011.

    Article  Google Scholar 

  14. L. Marchese, et al., “A microbolometer-based THz imager,” Proc. SPIE 7671, 76710Z (2010).

    Article  Google Scholar 

  15. A. Bergeron, et al., “Introducing a sub-wavelength pixel THz camera for the understanding of close pixel-to-wavelength imaging challenges”, Proc. of SPIE, Vol. 8373, 83732A, 2012.

    Article  Google Scholar 

  16. A. Bergeron, et al., “Resolution capability comparison of infrared and terahertz imagers”, Proc. of SPIE, Vol. 8188, 81880I, 2011.

    Article  Google Scholar 

  17. T. Pope, et al., “Uncooled detector, optics, and camera development for THz imaging,” Proc. SPIE 7311, 73110L-1 - 73110L-9, 2009.

    Article  Google Scholar 

  18. N. Blanchard, et al., “Catadioptric optics for high-resolution terahertz imager,” Proc. SPIE 8363, 83630B-1- 83630B-7, 2012.

    Article  Google Scholar 

  19. A. J. Gatesman, et al., “An anti-reflection coating for silicon optics at terahertz frequencies” IEEE microwave and guided wave letters 10 (7), 264–266, 2000.

    Article  Google Scholar 

  20. A. Bergeron, et al., “Components, concepts and technologies for useful video rate THz imaging”, Proc. of SPIE, Vol. 8544, 85440C, 2012.

    Article  Google Scholar 

  21. M. Bolduc et al., “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera”, Proc. SPIE, vol. 8023, pp. 80230C-1-80230C-10, 2011.

    Google Scholar 

  22. N. Oda, et al., “Microbolometer terahertz focal plane array and camera with improved sensitivity at 0.5 – 0.6 THz”, Proc. of 39th International Conference on Infrared, Millimeter, and Terahertz waves, 2014.

  23. HITRAN Website: http://www.cfa.harvard.edu/hitran

  24. Spectral Calculator Website: http://www.spectralcalc.com/info/about.php

  25. L.E. Marchese, et al., “Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera”, Proc. of SPIE, Vol. 9083, 9032G, 2014.

    Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Dufour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufour, D., Marchese, L., Terroux, M. et al. Review of terahertz technology development at INO. J Infrared Milli Terahz Waves 36, 922–946 (2015). https://doi.org/10.1007/s10762-015-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0181-5

Keywords

Navigation