Skip to main content
Log in

Saturation and Polarization Characteristics of 1.56 μm Optical Probe Pulses in a LTG-GaAs Photoconductive Antenna Terahertz Detector

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The characteristics of low temperature-grown GaAs photoconductive antenna (PCA) terahertz detectors probed by 1.56 μm laser pulses are investigated. The influence of TM and TE polarized probe, as well as the saturation characteristics are studied for 2 μm- and 5 μm-gap PCA’s. Different polarization characteristics at low probe powers and at the saturation regimes were observed. Results are explained in terms of the polarization-dependent photocarrier distribution at the PCA gap arising from tight focusing. This work also demonstrates using a 1.56 μm probe for a GaAs PCA to achieve ~60 dB SNR; matching its performance characteristics for above-bandgap probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, Chem. Phys. Lett., 332, 389–395 (2000).

    Article  Google Scholar 

  2. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, Opt. Express, 13, 115–120 (2005).

    Article  Google Scholar 

  3. M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, App. Phys. Lett., 80, 154–156 (2002).

    Article  Google Scholar 

  4. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express, 11, 2549–2554 (2003).

    Article  Google Scholar 

  5. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209–223 (2007).

    Google Scholar 

  6. L. Ho, R. Muller, M. Romer, K.C. Gordon, P. Kleinebudde, M. Pepper, T. Rades, Y.C. Shen, P.F. Taday, J.A. Zeitler, J. Controlled Release 127, 79–87 (2008).

    Article  Google Scholar 

  7. N. Sekine, K. Hirakawa, F. Sogawa, Y. Arakawa, N. Usami, Y. Shiraki, and T. Katoda, Appl. Phys. Lett. 68, 3419–3421 (1996).

    Article  Google Scholar 

  8. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 163504 (2005).

    Article  Google Scholar 

  9. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005).

    Article  Google Scholar 

  10. M. Tani, K-S Lee, and X.-C. Zhang, Appl. Phys. Lett. 77, 1396–1398 (2000).

    Article  Google Scholar 

  11. T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett. 97, 201110 (2010).

    Article  Google Scholar 

  12. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell Opt. Express 16, 9565–9570 (2008).

    Article  Google Scholar 

  13. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 90, 101119 (2007).

    Article  Google Scholar 

  14. J. Mangeney, and P. Crozat, C. R. Physique 9, 142–152 (2008).

    Article  Google Scholar 

  15. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat H. Bernas, K. Blary and J. F. Lampin, Appl. Phys. Lett. 87, 193510 (2005).

    Article  Google Scholar 

  16. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91,011102 (2007).

    Article  Google Scholar 

  17. F. Miyamaru, Yu Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Appl. Phys. Lett. 96, 211104 (2010).

    Article  Google Scholar 

  18. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, Appl. Phys. Lett. 72, 2069–2071 (1998).

    Article  Google Scholar 

  19. W. G. Heitman and P. M. van den Berg, Can. J. Phys. 53, 1305–1317 (1975).

    Article  Google Scholar 

  20. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1–87 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant program from the Development of Systems and Technology for Advanced Measurement and Analysis, Japan Science and Technology Agency (JST), and also by a grant program from the Feasibility Study Stage in Adaptable and Seamless Technology transfer Program (FS-stage, A-STEP), JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmer S. Estacio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estacio, E.S., Hibi, M., Saito, K. et al. Saturation and Polarization Characteristics of 1.56 μm Optical Probe Pulses in a LTG-GaAs Photoconductive Antenna Terahertz Detector. J Infrared Milli Terahz Waves 34, 423–430 (2013). https://doi.org/10.1007/s10762-013-9977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9977-3

Keywords

Navigation