Skip to main content
Log in

Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present an electronic beam switching/steering device for operation at THz frequencies. The propagation direction of the THz beam is switched via electronic manipulation of the refractive index of a liquid crystal. The design of the steering device and the parameters of the liquid crystal are described and angle-dependent THz-TDS measurements of the beam steering are reported. This device is able to deflect the propagation direction of the THz beam by 6.3 °. This particular device approach offers a viable option for beam steering/switching in various THz applications including fiber switches, scanning imagers, and free-space communication systems in which the detector or emitter is in motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Te., pp. 1–29, 2011.

  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antenn. Propag. M., vol. 49, no. 6, pp. 24–39, 2007.

    Article  Google Scholar 

  3. M. Theuer and J. Melinger, “High resolution waveguide terahertz time-domain spectroscopy,” J. Infrared Millim. Te., pp. 1–18, 2011.

  4. A. True, K. Schroeck, T. French, and C. Schmuttenmaer, “Terahertz spectroscopy of histidine enantiomers and polymorphs,” J. Infrared Millim. Te., vol. 32, no. 5, pp. 691–698, 2011.

    Article  Google Scholar 

  5. P. Jepsen and H. Merbold, “Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions,” J. Infrared Millim. Te., vol. 31, no. 4, pp. 430–440, 2010.

    Google Scholar 

  6. N. Vieweg, M. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Millim. Te., vol. 31, no. 11, pp. 1312–1320, 2010.

    Article  Google Scholar 

  7. J. Laib and D. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Te., vol. 31, no. 9, pp. 1015–1021, 2010.

    Article  Google Scholar 

  8. S. Katletz, M. Pfleger, H. Pühringer, N. Vieweg, B. Scherger, B. Heinen, M. Koch, and K. Wiesauer, “Efficient terahertz en-face imaging,” Opt. Express, vol. 19, no. 23, pp. 23042–23053, 2011.

    Article  Google Scholar 

  9. T. Shibuya, T. Suzuki, K. Suizu, and K. Kawase, “Non-destructive characterization of soot in exhaust filters using millimeter-wave imaging,” J. Infrared Millim. Te., vol. 32, no. 5, pp. 716–721, 2011.

    Article  Google Scholar 

  10. M. Scheller, J. Yarborough, J. Moloney, M. Fallahi, M. Koch, and S. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express, vol. 18, no. 26, pp. 27112–27117, 2010.

    Article  Google Scholar 

  11. W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Te., vol. 32, pp. 618–628, 2011.

    Article  Google Scholar 

  12. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express, vol. 19, no. 5, pp. 4528–4535, 2011.

    Article  Google Scholar 

  13. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt., vol. 50, no. 15, pp. 2256–2262, 2011.

    Article  Google Scholar 

  14. J. Liu, R. Mendis, and D. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett., vol. 98, p. 231113, 2011.

    Article  Google Scholar 

  15. C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Te., vol. 31, no. 2, pp. 214–220, 2010.

    Google Scholar 

  16. S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photonic. Tech. L., vol. 22, no. 2, pp. 79–81, 2010.

    Article  Google Scholar 

  17. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express, vol. 19, no. 25, pp. 24884–24889, 2011.

    Article  Google Scholar 

  18. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun., vol. 281, no. 18, pp. 4623–4625, 2008.

    Article  Google Scholar 

  19. T. Tsai, C. Chen, R. Pan, C. Pan, and X. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wirel. Co., vol. 14, no. 2, pp. 77–79, 2004.

    Article  Google Scholar 

  20. H. Chen, W. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nat., vol. 444, no. 7119, pp. 597–600, 2006.

    Article  Google Scholar 

  21. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared Millim. Te., pp. 1–6, 2012.

  22. H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” JOSA B, vol. 26, no. 1, pp. 101–106, 2009.

    Article  Google Scholar 

  23. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express, vol. 17, no. 9, pp. 7377–7382, 2009.

    Article  Google Scholar 

  24. D. Werner, D. Kwon, I. Khoo, A. Kildishev, and V. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express, vol. 15, no. 6, pp. 3342–3347, 2007.

    Article  Google Scholar 

  25. R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett., vol. 36, no. 13, pp. 1156–1158, 2000.

    Article  Google Scholar 

  26. H. Chen, W. Padilla, M. Cich, A. Azad, R. Averitt, and A. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. photonics, vol. 3, no. 3, pp. 148–151, 2009.

    Article  Google Scholar 

  27. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett., vol. 40, no. 2, pp. 124–126, 2004.

    Article  Google Scholar 

  28. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, p. 2634, 2002.

    Article  Google Scholar 

  29. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” JOSA B, vol. 24, no. 5, pp. 1230–1235, 2007.

    Article  Google Scholar 

  30. K. Nielsen, H. Rasmussen, A. Adam, P. Planken, O. Bang, and P. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express, vol. 17, no. 10, pp. 8592–8601, 2009.

    Article  Google Scholar 

  31. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express, vol. 17, no. 16, pp. 14053–15062, 2009.

    Article  Google Scholar 

  32. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys., vol. 102, no. 4, p. 043517, 2007.

    Article  Google Scholar 

  33. M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for THz applications,” submitted for publication, 2012.

  34. E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, R. Dabrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, S. M., K. Ogrodnik, P. Morawiak, and E. Miszczyk, “High birefringence liquid crystal mixtures for electro-optical devices,” Opt. Appl., vol. 42, no. 1, pp. 167–180, 2012.

    Google Scholar 

  35. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test., vol. 28, no. 1, pp. 30–35, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

Benedikt Scherger acknowledges financial support from the Friedrich Ebert Stiftung. Nico Vieweg likes to express his appreciation to the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Scherger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherger, B., Reuter, M., Scheller, M. et al. Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device. J Infrared Milli Terahz Waves 33, 1117–1122 (2012). https://doi.org/10.1007/s10762-012-9927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9927-5

Keywords

Navigation