Skip to main content
Log in

THz wave sensing for petroleum industrial applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5–3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5–20 THz (50–660 cm−1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. 2000, Annual book of ASTM standards, ASTM, West Conshohcken, PA, 2000.

  2. American Society for Testing and Materials, Philadelphia, Standard testing method for knock characteristics of motor fuels by the research method, ASTM D2699, 1985.

  3. G. E. Foder, K. B. Kohl, and R. L. Mason, Analysis of gasoline by FT-IR spectroscopy, Anal. Chem 68, 23 (1996).

    Article  Google Scholar 

  4. P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy, Spectrochimica Acta Part A 53, 199 (1997).

    Article  Google Scholar 

  5. D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer, J. Opt. A: Pure Appl. Opt 1, 680 (1999).

    Article  ADS  Google Scholar 

  6. J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, Anal. Chem 61, 313 (1989).

    Article  Google Scholar 

  7. M. H. Brooker and R. W. Berg, Non-invasive spectroscopic on-line methods to measure industrial processes, A Review, Green Industrial Applications of Ionic Liquids, A NATO Advanced Research Workshop (2000).

  8. F. F. Bentley and A. L. Rozek, Infrared spectra and characteristic Frequencies ∼ 700 – 300 cm −1, John Wiley and Sons, New York, 1968.

    Google Scholar 

  9. J. E. Pederson and S. R. Keiding, THz time-domain spectroscopy on non-polar liquids, IEEE J. QE 28, 2518 (1992).

    Article  Google Scholar 

  10. C. Ronne, Intermolecular liquid dynamic studied by THz-spectroscopy, Department of Chemistry, AARHUS University, Denmark, 2000.

    Google Scholar 

  11. D. H. Wiffen, Measurements on the absorption of microwaves, Part IV. Non-polar liquids, Trans. Faraday. Soc. 46, 124 (1950).

    Google Scholar 

  12. G. W. Pardoe, S. J. Larson, and H. A. Gebbie, Far-Infrared spectrum of ortho-xylene, J. Chem. Phys. 52, 6426 (1970).

    Article  Google Scholar 

  13. S. R. Keiding, Dipole correlation functions in liquids benzenes measured with terahertz time domain spectroscopy, J. Phys. Chem. A 101, 5250 (1997).

    Article  Google Scholar 

  14. F. M. Al-Douseri, Y.Q. Chen, and X.-C. Zhang, THz-spectroscopy of selected gasoline samples, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, page CMG6, San Francisco, 2004.

  15. X. Ma, Vapor deposited polymeric organic composite films, PhD thesis, Rensselaer Polytechnic Institute, 1995.

  16. Technical data book-petroleum refining, American petroleum institute, second edition, 1970.

  17. C. Kajicho and K. Chiyodaku, ERMA optical works, LTD, Tokyo, Japan.

  18. I. Stadelmann, Etraction of alcohols from gasoline using solid phase microextraction (SPME)s, 2001.

  19. S. Erickson, Infrared band handbook, volume 2, IFI/Plenum, NY, second edition, 1970.

    Google Scholar 

  20. R. Kellner, J. M. Mermet, M. Otto, and H. M. Winder, Analytical chemistry, Wilet-VCH, NY, 1998.

    Google Scholar 

  21. J. Cooper et al., Comparison of Near-IR, Raman, and Mid-IR spectroscopies for the determination of BTEX in petroleum fuels, Appl. Spectroscopy 51, 1613 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Douseri, F.M., Chen, Y. & Zhang, XC. THz wave sensing for petroleum industrial applications. Int J Infrared Milli Waves 27, 481–503 (2006). https://doi.org/10.1007/s10762-006-9102-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9102-y

Keywords

Navigation