Skip to main content

Advertisement

Log in

Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Dual-specificity tyrosine phosphorylation–regulated kinase 1A (Dyrk1A) is a highly conserved protein kinase, playing a key role in the regulation of physiological brain functions and pathological processes. In Alzheimer’s disease (AD), Dyrk1A promotes hyperphosphorylation of tau protein and abnormal aggregation of amyloid-β protein (Aβ). This study investigated the role of Dyrk1A in regulating neuroinflammation, another critical factor that contributes to AD. In the present study, we used an immortalized murine BV2 microglia cell line induced by lipopolysaccharide (LPS) to study neuroinflammation. The expression and activity of Dyrk1A kinase were both increased by inflammation. Dyrk1A inhibition using harmine or siRNA silencing significantly reduced the production of proinflammatory factors in LPS-stimulated BV2 cells. Reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the expression of the inflammatory proteins, cyclooxygenase 2 (COX2), and inducible nitric synthase (iNOS), were attenuated. In vivo, in ICR mice injected with LPS into the left lateral cerebral ventricle, harmine (20 mg/kg) administration decreased the expression of inflammatory proteins in the cortex and hippocampus of mice brain. In addition, immunohistochemical detection of ionized calcium-binding adapter molecule 1 (Iba1) and Nissl staining showed that harmine significantly attenuated microglia activation and neuronal damage in the CA1 region of hippocampus. Further mechanistic studies indicated that Dyrk1A suppression may be related to inhibition of the TLR4/NF-κB signaling pathway in LPS-induced neuroinflammation. Taken together, our studies suggest that Dyrk1A may be a novel target for the treatment of neurodegenerative diseases with an inflammatory component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhansali, R.S., M. Rammohan, P. Lee, A.P. Laurent, Q. Wen, P. Suraneni, B.H. Yip, Y.C. Tsai, S. Jenni, B. Bornhauser, et al. 2021. DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. The Journal of Clinical Investigation 131: e135937. https://doi.org/10.1172/jci135937.

    Article  CAS  PubMed Central  Google Scholar 

  2. Dierssen, M., and M.M. de Lagrán. 2006. DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): A gene with dosage effect during development and neurogenesis. The Scientific World Journal 6: 1911–1922. https://doi.org/10.1100/tsw.2006.319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guedj, F., P.L. Pereira, S. Najas, M.J. Barallobre, C. Chabert, B. Souchet, C. Sebrie, C. Verney, Y. Herault, M. Arbones, and J.M. Delabar. 2012. DYRK1A: A master regulatory protein controlling brain growth. Neurobiology of Diseases 46: 190–203. https://doi.org/10.1016/j.nbd.2012.01.007.

    Article  CAS  Google Scholar 

  4. Velazquez, R., B. Meechoovet, A. Ow, C. Foley, A. Shaw, B. Smith, S. Oddo, C. Hulme, and T. Dunckley. 2019. Chronic Dyrk1 inhibition delays the onset of AD-like pathology in 3xTg-AD mice. Molecular Neurobiology 56: 8364–8375. https://doi.org/10.1007/s12035-019-01684-9.

    Article  CAS  PubMed  Google Scholar 

  5. Shi, J., T. Zhang, C. Zhou, M.O. Chohan, X. Gu, J. Wegiel, J. Zhou, Y.W. Hwang, K. Iqbal, I. Grundke-Iqbal, et al. 2008. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. Journal of Biological Chemistry 283: 28660–28669. https://doi.org/10.1074/jbc.M802645200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryoo, S.R., H.J. Cho, H.W. Lee, H.K. Jeong, C. Radnaabazar, Y.S. Kim, M.J. Kim, M.Y. Son, H. Seo, S.H. Chung, and W.J. Song. 2008. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: Evidence for a functional link between Down syndrome and Alzheimer’s disease. Journal of Neurochemistry 104: 1333–1344. https://doi.org/10.1111/j.1471-4159.2007.05075.x.

    Article  CAS  PubMed  Google Scholar 

  7. Ryu, Y.S., S.Y. Park, M.S. Jung, S.H. Yoon, M.Y. Kwen, S.Y. Lee, S.H. Choi, C. Radnaabazar, M.K. Kim, H. Kim, et al. 2010. Dyrk1A-mediated phosphorylation of presenilin 1: A functional link between Down syndrome and Alzheimer’s disease. Journal of Neurochemistry 115: 574–584. https://doi.org/10.1111/j.1471-4159.2010.06769.x.

    Article  CAS  PubMed  Google Scholar 

  8. Gwack, Y., S. Sharma, J. Nardone, B. Tanasa, A. Iuga, S. Srikanth, H. Okamura, D. Bolton, S. Feske, P.G. Hogan, and A. Rao. 2006. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441: 646–650. https://doi.org/10.1038/nature04631.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, E.J., Y.S. Ahn, and K.C. Chung. 2001. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. Journal of Biological Chemistry 276: 39819–39824. https://doi.org/10.1074/jbc.M104091200.

    Article  CAS  PubMed  Google Scholar 

  10. Kurabayashi, N., M.D. Nguyen, and K. Sanada. 2015. DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model. EMBO Reports 16: 1548–1562. https://doi.org/10.15252/embr.201540374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, J., Y. Oh, L. Yoo, M.S. Jung, W.J. Song, S.H. Lee, H. Seo, and K.C. Chung. 2010. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. Journal of Biological Chemistry 285: 31895–31906. https://doi.org/10.1074/jbc.M110.147520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Martinez, J., E.M. Vela, M. Tora-Ponsioen, O.H. Ocaña, M.A. Nieto, and J. Galceran. 2009. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. Journal of Cell Science 122: 1574–1583. https://doi.org/10.1242/jcs.044354.

    Article  CAS  PubMed  Google Scholar 

  13. Aranda, S., M. Alvarez, S. Turró, A. Laguna, and S. de la Luna. 2008. Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Molecular and Cellular Biology 28: 5899–5911. https://doi.org/10.1128/mcb.00394-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, F., J. Wu, Y. Gong, P. Wang, L. Zhu, L. Tong, X. Chen, Y. Ling, and C. Huang. 2017. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Progress in Neuro-Psychopharmacology and Biological Psychiatry 79: 258–267. https://doi.org/10.1016/j.pnpbp.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad, M., S. Saleem, H. Zhuang, A.S. Ahmad, V. Echeverria, A. Sapirstein, and S. Doré. 2006. 1-hydroxyPGE reduces infarction volume in mouse transient cerebral ischemia. European Journal of Neuroscience 23: 35–42. https://doi.org/10.1111/j.1460-9568.2005.04540.x.

    Article  PubMed  Google Scholar 

  16. Liu, H., Z. Zhang, C. Zang, L. Wang, H. Yang, C. Sheng, J. Shang, Z. Zhao, F. Yuan, Y. Yu, et al. 2021. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. Journal of Ethnopharmacology 267: 113491. https://doi.org/10.1016/j.jep.2020.113491.

    Article  CAS  PubMed  Google Scholar 

  17. Mao, J., P. Maye, P. Kogerman, F.J. Tejedor, R. Toftgard, W. Xie, G. Wu, and D. Wu. 2002. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. Journal of Biological Chemistry 277: 35156–35161. https://doi.org/10.1074/jbc.M206743200.

    Article  CAS  PubMed  Google Scholar 

  18. Adayev, T., J. Wegiel, and Y.W. Hwang. 2011. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Archives of Biochemistry and Biophysics 507: 212–218. https://doi.org/10.1016/j.abb.2010.12.024.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, B., L. Meng, N. Zou, H. Wang, S. Li, L. Huang, X. Cheng, Z. Wang, W. Chen, and C. Wang. 2019. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine 62: 152967. https://doi.org/10.1016/j.phymed.2019.152967.

    Article  CAS  PubMed  Google Scholar 

  20. Pan, J.S., M.Z. Hong, and J.L. Ren. 2009. Reactive oxygen species: A double-edged sword in oncogenesis. World Journal of Gastroenterology 15: 1702–1707. https://doi.org/10.3748/wjg.15.1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cunningham, C., D.C. Wilcockson, S. Campion, K. Lunnon, and V.H. Perry. 2005. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. Journal of Neuroscience 25: 9275–9284. https://doi.org/10.1523/jneurosci.2614-05.2005.

    Article  CAS  PubMed  Google Scholar 

  22. Oboudiyat, C., H. Glazer, A. Seifan, C. Greer, and R.S. Isaacson. 2013. Alzheimer’s disease. Seminars in Neurology 33: 313–329. https://doi.org/10.1055/s-0033-1359319.

    Article  PubMed  Google Scholar 

  23. Lull, M.E., and M.L. Block. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7: 354–365. https://doi.org/10.1016/j.nurt.2010.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, X. Jin, K. Kondo, K. Fujita, H. Homma, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565. https://doi.org/10.1038/s41467-021-26851-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jian, M., J.S. Kwan, M. Bunting, R.C. Ng, and K.H. Chan. 2019. Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway. Journal of Neuroinflammation 16: 110. https://doi.org/10.1186/s12974-019-1492-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calsolaro, V., and P. Edison. 2016. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s & Dementia 12: 719–732. https://doi.org/10.1016/j.jalz.2016.02.010.

    Article  Google Scholar 

  27. Wiseman, F.K., T. Al-Janabi, J. Hardy, A. Karmiloff-Smith, D. Nizetic, V.L. Tybulewicz, E.M. Fisher, and A. Strydom. 2015. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews Neuroscience 16: 564–574. https://doi.org/10.1038/nrn3983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dang, T., W.Y. Duan, B. Yu, D.L. Tong, C. Cheng, Y.F. Zhang, W. Wu, K. Ye, W.X. Zhang, M. Wu, et al. 2018. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Molecular Psychiatry 23: 747–758. https://doi.org/10.1038/mp.2016.253.

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar, S., H.M. Nguyen, E. Malovic, J. Luo, M. Langley, B.N. Palanisamy, N. Singh, S. Manne, M. Neal, M. Gabrielle, et al. 2020. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. The Journal of Clinical Investigation 130: 4195–4212. https://doi.org/10.1172/jci136174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walte, A., K. Rüben, R. Birner-Gruenberger, C. Preisinger, S. Bamberg-Lemper, N. Hilz, F. Bracher, and W. Becker. 2013. Mechanism of dual specificity kinase activity of DYRK1A. FEBS Journal 280: 4495–4511. https://doi.org/10.1111/febs.12411.

    Article  CAS  PubMed  Google Scholar 

  31. Arbones, M.L., A. Thomazeau, A. Nakano-Kobayashi, M. Hagiwara, and J.M. Delabar. 2019. DYRK1A and cognition: A lifelong relationship. Pharmacology & Therapeutics 194: 199–221. https://doi.org/10.1016/j.pharmthera.2018.09.010.

    Article  CAS  Google Scholar 

  32. Zheng, M., K. Li, T. Chen, S. Liu, and L. He. 2021. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Research Bulletin 170: 65–73. https://doi.org/10.1016/j.brainresbull.2021.02.008.

    Article  CAS  PubMed  Google Scholar 

  33. Li, J., Y. Zhou, G. Du, X. Qin, and L. Gao. 2019. Integration of transcriptomics and network analysis deciphers the mechanisms of baicalein in improving learning and memory impairment in senescence-accelerated mouse prone 8 (SAMP8). European Journal of Pharmacology 865: 172789. https://doi.org/10.1016/j.ejphar.2019.172789.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, S., J. Peng, P. Sherchan, Y. Ma, S. Xiang, F. Yan, H. Zhao, Y. Jiang, N. Wang, J.H. Zhang, and H. Zhang. 2020. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation 17: 168. https://doi.org/10.1186/s12974-020-01853-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Achkar, T.M., X. Huang, Z. Plotkin, R.M. Sandoval, G.J. Rhodes, and P.C. Dagher. 2006. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. American Journal of Physiology-Renal Physiology 290: F1034–F1043. https://doi.org/10.1152/ajprenal.00414.2005.

    Article  CAS  PubMed  Google Scholar 

  36. Ciesielska, A., M. Matyjek, and K. Kwiatkowska. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences 78: 1233–1261. https://doi.org/10.1007/s00018-020-03656-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by grants from the National Sciences Foundation of China (81630097, 81773718, 81773589), The National Key Research and Development Program of China (Grant No. SQ2018YFA090025-04 and No. 2018YFA0901900), CAMS Innovation Fund for Medical Sciences (2021-1012 M-028 and 2021-I2M-1–028), The Drug Innovation Major Project (2018ZX09711001-003–020, 2018ZX09711001-003–005, and 2018ZX09711001-008–005), and CAMS The Fundamental Research Funds for the Central Universities (2018RC350002).

Author information

Authors and Affiliations

Authors

Contributions

Dan Zhang and Xiuqi Bao revised the manuscript and advised experimental design; Cheng Ju wrote the manuscript; Cheng Ju and Yue Wang performed the research; Caixia Zang and Hui Liu conducted and helped with the experiment methods; Fangyu Yuan, Jingwen Ning, and Meiyu Shang analyzed the data and participated in statistical analyses; Jingwei Ma, Gen Li, and Yang Yang were responsible for surgery and treatments. All of the authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan Zhang.

Ethics declarations

Ethics Approval

All animal studies were approved by the Animal Care and Welfare Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors Cheng Ju and Yue Wang contributed equally to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, C., Wang, Y., Zang, C. et al. Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway. Inflammation 45, 2375–2387 (2022). https://doi.org/10.1007/s10753-022-01699-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01699-w

KEY WORDS

Navigation