Skip to main content

Advertisement

Log in

Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract—

This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Gao, X., W. Z. Wang, Q. M. Xiao, H. N. Qi, B. Y. Zhu, B. Y. Li, P. Wang, and Y. Y. Han. 2020. Correlation between neutrophil gelatinase-associated lipocalin and soluble CD14 subtype on the prognosis evaluation of acute paraquat poisoning patients. Human and Experimental Toxicology:960327119897111. https://doi.org/10.1177/0960327119897111.

  2. Laghrib, F., M. Bakasse, S. Lahrich, and M.A. El Mhammedi. 2020. Electrochemical sensors for improved detection of paraquat in food samples: A review. Materials Science & Engineering, C: Materials for Biological Applications 107: 110349. https://doi.org/10.1016/j.msec.2019.110349.

    Article  CAS  Google Scholar 

  3. Wang, J.W., X. Yang, B.Y. Ning, Z.Y. Yang, L.H. Luo, H. Xiao, and Z. Ning. 2019. The successful treatment of systemic toxic induced paraquat poisoning by skin absorption: Case reports and a literature review. International Journal of Clinical and Experimental Pathology 12 (9): 3662–3670.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmad, I., S. Shukla, D. Singh, A.K. Chauhan, V. Kumar, B.K. Singh, D.K. Patel, H.P. Pandey, and C. Singh. 2019. Correction to: CYP2E1-mediated oxidative stress regulates HO-1 and GST expression in maneb- and paraquat-treated rat polymorphonuclear leukocytes. Molecular and Cellular Biochemistry 459 (1–2): 215–217. https://doi.org/10.1007/s11010-019-03587-8.

    Article  CAS  PubMed  Google Scholar 

  5. Anamimoghadam, O., J.A. Cooper, M.T. Nguyen, Q.H. Guo, L. Mosca, I. Roy, J. Sun, et al. 2019. Cyclotris(paraquat-p-phenylenes). Angewandte Chemie (International ed. in English) 58 (39): 13778–13783. https://doi.org/10.1002/anie.201907329.

    Article  CAS  Google Scholar 

  6. Anusha, J., and K. Moudgil. 2019. Accidental paraquat induced hypersalivation: A case report. Daru 27 (2): 885–888. https://doi.org/10.1007/s40199-019-00298-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai, Z., F. Zheng, Y. Ding, Y. Zhan, R. Gong, J. Li, M. Aschner, Q. Zhang, S. Wu, and H. Li. 2019. Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells. Toxicological Sciences. https://doi.org/10.1093/toxsci/kfz162.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang, C., J. Ma, B.X. Li, and Y. Sun. 2019. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Experimental and therapeutic medicine 18 (5): 3643–3649. https://doi.org/10.3892/etm.2019.7963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, W., W. Liu, W. Yu, D. Fei, X. Meng, S. Yang, S. Meng, and M. Zhao. 2018. Angptl2 deficiency attenuates paraquat (PQ)-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis through NF-kappaB pathway. Biochemical and Biophysical Research Communications 503 (1): 94–101. https://doi.org/10.1016/j.bbrc.2018.05.186.

    Article  CAS  PubMed  Google Scholar 

  10. Midwood, K., S. Sacre, A.M. Piccinini, J. Inglis, A. Trebaul, E. Chan, S. Drexler, et al. 2009. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nature Medicine 15 (7): 774–780. https://doi.org/10.1038/nm.1987.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda, A., T. Hirota, M. Akahoshi, M. Shimizu, M. Tamari, A. Miyatake, A. Takahashi, et al. 2005. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Human Molecular Genetics 14 (19): 2779–2786. https://doi.org/10.1093/hmg/ddi311.

    Article  CAS  PubMed  Google Scholar 

  12. Qian, J., Y. Ye, L. Lv, C. Zhu, and S. Ye. 2014. FTY720 attenuates paraquat-induced lung injury in mice. International Immunopharmacology 21 (2): 426–431. https://doi.org/10.1016/j.intimp.2014.05.025.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, L., and Z. Wang. 2016. Chloroquine rescues A549 cells from paraquat-induced death. Drug and Chemical Toxicology 39 (2): 167–173. https://doi.org/10.3109/01480545.2015.1063063.

    Article  CAS  PubMed  Google Scholar 

  14. Blanco-Ayala, T., A.C. Anderica-Romero, and J. Pedraza-Chaverri. 2014. New insights into antioxidant strategies against paraquat toxicity. Free Radical Research 48 (6): 623–640. https://doi.org/10.3109/10715762.2014.899694.

    Article  CAS  PubMed  Google Scholar 

  15. Dong, X.S., X.Y. Xu, Y.Q. Sun, Z.H. Jiang, and Z. Liu. 2013. Toll-like receptor 4 is involved in myocardial damage following paraquat poisoning in mice. Toxicology 312: 115–122. https://doi.org/10.1016/j.tox.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  16. W, Liu, Shan LP, Dong XS, and Liu Z. 2014. Toll-like receptor 4 implicated in acute lung injury induced by paraquat poisoning in mice. International journal of clinical and experimental medicine 7 (10): 3392–3397.

    Google Scholar 

  17. Fang-Fang, Duan, Gabriel, Barron, Angelo, Meliton, Gokhan, Mutlu, and Nickolai. 2019. P311 Promotes Lung Fibrosis via Stimulation of TGF-β1, 2 and 3 Translation.

  18. Wu, Y., J. Lv, D. Feng, F. Jiang, X. Fan, Z. Zhang, R. Yin, and L. Xu. 2012. Restoration of alveolar type II cell function contributes to simvastatin-induced attenuation of lung ischemia-reperfusion injury. International Journal of Molecular Medicine 30 (6): 1294–1306. https://doi.org/10.3892/ijmm.2012.1161.

    Article  CAS  PubMed  Google Scholar 

  19. Kondo, H., K. Miyoshi, S. Sakiyama, A. Tangoku, and T. Noma. 2015. Differential regulation of gene expression of alveolar epithelial cell markers in human lung adenocarcinoma-derived A549 clones. Stem Cells International 2015.

  20. B, Hinz, and Gabbiani G. 2003. Cell-matrix and cell-cell contacts of myofibroblasts: Role in connective tissue remodeling. Thrombosis and haemostasis 90 (6): 993–1002. https://doi.org/10.1160/th03-05-0328.

    Article  PubMed  Google Scholar 

  21. Buendia, J.A., J.A. Justinico Castro, L.J.T. Vela, D. Sinisterra, J.P. Sanchez Villamil, and A.F. Zuluaga Salazar. 2019. Comparison of four pharmacological strategies aimed to prevent the lung inflammation and paraquat-induced alveolar damage. BMC Research Notes 12 (1): 584. https://doi.org/10.1186/s13104-019-4598-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D, Chakraborty, Zenker S, Rossaint J, Hölscher A, Pohlen M, Zarbock A, Roth J, and Vogl T. 2017. Alarmin S100A8 activates alveolar epithelial cells in the context of acute lung injury in a TLR4-dependent manner. Frontiers in immunology 8: 1493. https://doi.org/10.3389/fimmu.2017.01493.

    Article  CAS  Google Scholar 

  23. PJ, Matheson, Eid MA, Wilson MA, Graham VS, Matheson SA, Weaver JL, Downard CD, and Smith JW. 2018. Damage-associated molecular patterns in resuscitated hemorrhagic shock are mitigated by peritoneal fluid administration. American journal of physiology. Lung cellular and molecular physiology 315 (3):L339-L347. doi:https://doi.org/10.1152/ajplung.00183.2017.

  24. Somu, B., S.H. Shankar, U. Baitha, and A. Biswas. 2020. Paraquat poisoning. QJM. https://doi.org/10.1093/qjmed/hcaa009.

    Article  PubMed  Google Scholar 

  25. Tyagi, N., D.K. Singh, D. Dash, and R. Singh. 2019. Curcumin modulates paraquat-induced epithelial to mesenchymal transition by regulating transforming growth factor-beta (TGF-beta) in A549 cells. Inflammation 42 (4): 1441–1455. https://doi.org/10.1007/s10753-019-01006-0.

    Article  CAS  PubMed  Google Scholar 

  26. Hua, X.F., X.H. Li, M.M. Li, C.Y. Zhang, H.J. Liu, T. Sun, H.G. Zhou, and C. Yang. 2017. Doxycycline attenuates paraquat-induced pulmonary fibrosis by downregulating the TGF-beta signaling pathway. Journal of Thoracic Disease 9 (11): 4376–4386. https://doi.org/10.21037/jtd.2017.10.42.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, Y., S. Ren, L. Liu, R. Yao, X. Ma, and L. Chen. 2017. Bone morphogenetic protein 7 alleviates paraquat-induced pulmonary fibrosis via TGF-beta1/Erk1/2 pathway. International Journal of Clinical and Experimental Pathology 10 (8): 8503–8509.

    PubMed  PubMed Central  Google Scholar 

  28. Day, Joanna M., Anders I. Olin, Alan D. Murdoch, Ann Canfield, Takako Sasaki, Rupert Timpl, Timothy E. Hardingham, and Anders Aspberg. 2004. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. The Journal of biological chemistry 279 (13): 12511–12518.

    Article  CAS  Google Scholar 

  29. Tong, X., J. Zhang, M. Shen, and J. Zhang. 2020. Silencing of Tenascin-C inhibited inflammation and apoptosis Via PI3K/Akt/NF-kappaB signaling pathway in subarachnoid hemorrhage cell model. Journal of Stroke and Cerebrovascular Diseases 29 (1): 104485. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104485.

    Article  PubMed  Google Scholar 

  30. Uddin, M.J., C.S. Li, Y. Joe, Y. Chen, Q. Zhang, S.W. Ryter, and H.T. Chung. 2015. Carbon monoxide inhibits Tenascin-C mediated inflammation via IL-10 expression in a septic mouse model. Mediators of Inflammation 2015: 613249. https://doi.org/10.1155/2015/613249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, H., X. Ge, K. Pan, M. Sui, H. Cai, C. Cui, C. Li, and S. Lu. 2019. The predictive role of Tenascin-C and cellular communication network factor 3 (CCN3) in post hepatectomy liver failure in a rat model and 50 patients following partial hepatectomy. Medical Science Monitor 25: 6755–6766. https://doi.org/10.12659/MSM.917331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lingasamy, P., A. Tobi, M. Haugas, H. Hunt, P. Paiste, T. Asser, T. Ratsep, V.R. Kotamraju, R. Bjerkvig, and T. Teesalu. 2019. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials 219: 119373. https://doi.org/10.1016/j.biomaterials.2019.119373.

    Article  CAS  PubMed  Google Scholar 

  33. Mane, D.R., S.U. Rahman, K.M. Desai, A.D. Kale, K.G. Bhat, and P.R. Arany. 2020. Roles of the matricellular protein Tenascin-C in T-lymphocyte trafficking and etiopathogenesis of Oral Lichen Planus. Archives of Oral Biology 110: 104622. https://doi.org/10.1016/j.archoralbio.2019.104622.

    Article  CAS  PubMed  Google Scholar 

  34. Mangan, R.J., L. Stamper, T. Ohashi, J.A. Eudailey, E.P. Go, F.H. Jaeger, H.L. Itell, et al. 2019. Determinants of Tenascin-C and HIV-1 envelope binding and neutralization. Mucosal Immunology 12 (4): 1004–1012. https://doi.org/10.1038/s41385-019-0164-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. BL, Gruber, Mienaltowski MJ, MacLeod JN, Schittny J, Kasper S, and Flück M. . 2020. Tenascin-C expression controls the maturation of articular cartilage in mice. BMC Research Notes 13 (1): 78. https://doi.org/10.1186/s13104-020-4906-8.

    Article  CAS  Google Scholar 

  36. L, Song, Wang L, Li F, Yukht A, Qin M, Ruther H, Yang M, Chaux A, Shah PK, and Sharifi BG. 2017. Bone marrow-derived Tenascin-C attenuates cardiac hypertrophy by controlling inflammation. Journal of the American College of Cardiology 70 (13): 1601–1615. https://doi.org/10.1016/j.jacc.2017.07.789.

    Article  CAS  Google Scholar 

  37. C, Cifuentes-Diaz, Faille L, Goudou D, Schachner M, Rieger F, and Angaut-Petit D. 2002. Abnormal reinnervation of skeletal muscle in a tenascin-C-deficient mouse. Journal of neuroscience research 67 (1): 93–99. https://doi.org/10.1002/jnr.10109.

    Article  CAS  Google Scholar 

  38. F, Morellini, and Schachner M. 2006. Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. The European journal of neuroscience 23 (5): 1255–1268. https://doi.org/10.1111/j.1460-9568.2006.04657.x.

    Article  Google Scholar 

  39. R, Chiquet-Ehrismann, Orend G, Chiquet M, Tucker RP, and Midwood KS. 2014. Tenascins in stem cell niches. Matrix biology: Journal of the International Society for Matrix Biology 37: 112–123. https://doi.org/10.1016/j.matbio.2014.01.007.

    Article  CAS  Google Scholar 

  40. Laporte, De., Jeffrey J. Laura, Federico Tortelli Rice, and Jeffrey A. Hubbell. 2013. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 8 (4): e62076. https://doi.org/10.1371/journal.pone.0062076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Nos. 81571882 and 81772053).

Author information

Authors and Affiliations

Authors

Contributions

Liu Wei designed the study, Zhang Di, Liu Zhi, Liu Qianqian, Lan Honghai, Peng Jin jin, and Liu Xiaowei performed experiments, Liu Wei and Zhang Di analyzed data. The manuscript was drafted and edited by Zhang Di, Liu Zhi, and Liu Wei. All authors approved the submitted work.

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Ethics Approval and Consent to Participate (Human Ethics, Animal Ethics, or Plant Ethics)

All procedures about animal use here were proved by the Institutional Committee of Animal Care in China Medical University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, Z., Liu, Q. et al. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 45, 222–233 (2022). https://doi.org/10.1007/s10753-021-01540-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01540-w

KEY WORDS:

Navigation