Skip to main content

Advertisement

Log in

Emodin Attenuates Acetaminophen-Induced Hepatotoxicity via the cGAS-STING Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Emodin is a natural bioactive compound from traditional Chinese herbs that exerts anti-inflammatory, antioxidant, anticancer, hepatoprotective, and neuroprotective effects. However, the protective effects of emodin in acetaminophen (APAP)-induced hepatotoxicity are not clear. The present study examined the effects of emodin on APAP-induced hepatotoxicity and investigated the potential molecular mechanisms. C57BL/6 mice were pretreated with emodin (15 and 30 mg/kg) for 5 consecutive days and then given APAP (300 mg/kg) to establish an APAP-induced liver injury model. Mice were sacrificed to detect the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and albumin (ALB) and the liver tissue levels of glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD). Histological assessment, Western blotting, and ELISA were performed. Emodin pretreatment significantly reduced the levels of ALT, AST, and ALP; increased the levels of ALB; alleviated hepatocellular damage and apoptosis; attenuated the exhaustion of GSH and SOD and the accumulation of MDA; and increased the expression of antioxidative enzymes, including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1). Emodin also inhibited the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Emodin inhibited interferon (IFN)-α, cyclic GMP-AMP synthase (cGAS), and its downstream signaling effector stimulator of interferon genes (STING) expression to protect the liver against APAP-induced inflammatory responses and apoptosis. These results suggest that emodin protected hepatocytes from APAP-induced liver injury via the upregulation of the Nrf2-mediated antioxidative stress pathway, the inhibition of the NLRP3 inflammasome, and the downregulation of the cGAS-STING signaling pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the paper.

References

  1. Im, Y.J., J.Y. Jeon, E.Y. Kim, Y. Kim, D.J. Oh, J.S. Yoo, D.H. Shin, S.W. Chae, and M.G. Kim. 2015. An assessment of the pharmacokinetics of a sustained-release formulation of a tramadol/acetaminophen combination in healthy subjects. Clinical Therapeutics 37: 376–389. https://doi.org/10.1016/j.clinthera.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  2. Msolli, M.A., A. Sekma, M. Toumia, K. Bel Haj Ali, M.H. Khalil, M.H. Grissa, W. Bouida, K. Beltaief, A. Zorgati, M. Methamem, et al. 2020. Acetaminophen Nonsteroidal Anti-inflammatory Drugs or Combination of Both Analgesics in Acute Posttrauma Pain: A Randomized Controlled Trial. Academic Emergency Medicine 28 (2): 155–163. https://doi.org/10.1111/acem.14169.

    Article  PubMed  Google Scholar 

  3. Hua, H., X. Ge, M. Wu, C. Zhu, L. Chen, G. Yang, Y. Zhang, S. Huang, A. Zhang, and Z. Jia. 2018. Rotenone Protects Against Acetaminophen-Induced Kidney Injury by Attenuating Oxidative Stress and Inflammation. Kidney & Blood Pressure Research 43: 1297–1309. https://doi.org/10.1159/000492589.

    Article  CAS  Google Scholar 

  4. Bunchorntavakul, C., and K.R. Reddy. 2018. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and Acute Liver Failure. Clinics in liver disease 2018 (22): 325–346. https://doi.org/10.1016/j.cld.2018.01.007.

    Article  Google Scholar 

  5. Athuraliya, T.N., and A.L. Jones. 2009. Prolonged N-acetylcysteine therapy in late acetaminophen poisoning associated with acute liver failure–a need to be more cautious? Critical Care 13: 144. https://doi.org/10.1186/cc7800.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Woolbright, B.L., and H. Jaeschke. 2017. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. Journal of Hepatology 66: 836–848. https://doi.org/10.1016/j.jhep.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  7. Jaeschke, H., and M.R. McGill. 2015. Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicology Letters 235: 216–217. https://doi.org/10.1016/j.toxlet.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, Z., X. Guo, K. Zhang, G. Sekaran, B. Cao, Q. Zhao, S. Zhang, G.M. Kirby, and X. Zhang. 2019. The Essential Oils and Eucalyptol From Artemisia vulgaris L Prevent Acetaminophen-Induced Liver Injury by Activating Nrf2-Keap1 and Enhancing APAP Clearance Through Non-Toxic Metabolic Pathway. Frontiers in Pharmacology 10: 782. https://doi.org/10.3389/fphar.2019.00782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Connolly, M.K., D. Ayo, A. Malhotra, M. Hackman, A.S. Bedrosian, J. Ibrahim, N.E. Cieza-Rubio, A.H. Nguyen, J.R. Henning, M. Dorvil-Castro, et al. 2011. Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology 54: 959–968. https://doi.org/10.1002/hep.24429.

    Article  CAS  PubMed  Google Scholar 

  10. Du, K., A. Ramachandran, and H. Jaeschke. 2016. Oxidative stress during acetaminophen hepatotoxicity: Sources pathophysiological role and therapeutic potential. Redox Biology 10: 148–156. https://doi.org/10.1016/j.redox.2016.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, M., Y. Huo, S. Yin, and H. Hu. 2018. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology 17: 274–283. https://doi.org/10.1016/j.redox.2018.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krenkel, O., J.C. Mossanen, and F. Tacke. 2014. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surgery and Nutrition 3: 331–343. https://doi.org/10.3978/j.issn.2304-3881.2014.11.01.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Samra, Y.A., M.F. Hamed, and A.R. El-Sheakh. 2020. Hepatoprotective effect of allicin against acetaminophen-induced liver injury: Role of inflammasome pathway apoptosis and liver regeneration. Journal of Biochemical and Molecular Toxicology 34: e22470. https://doi.org/10.1002/jbt.22470.

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820. https://doi.org/10.1016/j.cell.2010.01.022.

    Article  CAS  PubMed  Google Scholar 

  15. Mukai, K., H. Konno, T. Akiba, T. Uemura, S. Waguri, T. Kobayashi, G.N. Barber, H. Arai, and T. Taguchi. 2016. Activation of STING requires palmitoylation at the Golgi. Nature Communications 7: 11932. https://doi.org/10.1038/ncomms11932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka, Y., and Z.J. Chen. 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Science Signaling 5: ra20. https://doi.org/10.1126/scisignal.2002521.

  17. Petrasek, J., A. Iracheta-Vellve, T. Csak, A. Satishchandran, K. Kodys, E.A. Kurt-Jones, K.A. Fitzgerald, and G. Szabo. 2013. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proceedings of the National Academy of Sciences of the United States of America 110: 16544–16549. https://doi.org/10.1073/pnas.1308331110.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, R. Fujii, F. Ishidate, T. Tanaka, Y. Tanaka, et al. 2019. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Reports 29: 1261–1273. https://doi.org/10.1016/j.celrep.2019.09.050.

    Article  CAS  PubMed  Google Scholar 

  19. Bai, J., C. Cervantes, S. He, J. He, G.R. Plasko, J. Wen, Z. Li, D. Yin, C. Zhang, M. Liu, et al. 2020. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Communications Biology 3: 257. https://doi.org/10.1038/s42003-020-0986-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai, J., and F. Liu. 2019. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 68: 1099–1108. https://doi.org/10.2337/dbi18-0052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan, Z.B., H.J. Fan, Y.T. Wu, L.P. Xie, Y.M. Bi, H.L. Xu, H.M. Chen, J. Li, B. Liu, and Y.C. Zhou. 2019. Rheum palmatum extract exerts anti-hepatocellular carcinoma effects by inhibiting signal transducer and activator of transcription 3 signaling. Journal of Ethnopharmacology 232: 62–72. https://doi.org/10.1016/j.jep.2018.12.019.

    Article  CAS  PubMed  Google Scholar 

  22. Ma, L., Z. Shen, H. Hu, H. Zhou, L. Yu, H. Jiang, and S. Zeng. 2021. Effects of rhein and Rheum palmatum L extract on the pharmacokinetics and tissue distribution of aristolochic acid I and its demethylated metabolite in rats. Journal of Ethnopharmacology 267: 113537. https://doi.org/10.1016/j.jep.2020.113537.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J.B., H.P. Zhao, Y.L. Zhao, C. Jin, D.J. Liu, W.J. Kong, F. Fang, L. Zhang, H.J. Wang, and X.H. Xiao. 2011. Hepatotoxicity or hepatoprotection: Pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum L in treating rat liver injury. PLoS ONE 6: e24498. https://doi.org/10.1371/journal.pone.0024498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, E.H., S.Y. Baek, J.Y. Park, and Y.W. Kim. 2020. Emodin in Rheum undulatum inhibits oxidative stress in the liver via AMPK with Hippo/Yap signalling pathway. Pharmaceutical Biology 58: 333–341. https://doi.org/10.1080/13880209.2020.1750658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong, X., J. Fu, X. Yin, S. Cao, X. Li, L. Lin, and J. Ni. 2016. Emodin: A Review of its Pharmacology Toxicity and Pharmacokinetics. Phytotherapy Research 30: 1207–1218. https://doi.org/10.1002/ptr.5631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu, N., J. Liu, X. Xue, and Y. Li. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. European Journal of Pharmacology 882: 173269. https://doi.org/10.1016/j.ejphar.2020.173269.

  27. Bhadauria, M. 2010. Dose-dependent hepatoprotective effect of emodin against acetaminophen-induced acute damage in rats. Experimental and Toxicologic Pathology 62: 627–635. https://doi.org/10.1016/j.etp.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki, S., L.H. Toledo-Pereyra, F.J. Rodriguez, and D. Cejalvo. 1993. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury: Modulating effects of FK506 and cyclosporine. Transplantation 55: 1265–1272. https://doi.org/10.1097/00007890-199306000-00011.

    Article  CAS  PubMed  Google Scholar 

  29. Esh, C.J., A.R. Mauger, R.A. Palfreeman, H. Al-Janubi, and L. Taylor. 2017. Acetaminophen (Paracetamol): Use beyond Pain Management and Dose Variability. Frontiers in Physiology 8: 1092. https://doi.org/10.3389/fphys.2017.01092.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoon, E., A. Babar, M. Choudhary, M. Kutner, and N. Pyrsopoulos. 2016. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. Journal of Clinical and Translational Hepatology 4: 131–142. https://doi.org/10.14218/jcth.2015.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nadler, A., and D.M. Fein. 2018. Acetaminophen Poisoning. Pediatrics in Review 39: 316–318. https://doi.org/10.1542/pir.2017-0093.

    Article  PubMed  Google Scholar 

  32. Chun, L.J., M.J. Tong, R.W. Busuttil, and J.R. Hiatt. 2009. Acetaminophen hepatotoxicity and acute liver failure. Journal of Clinical Gastroenterology 43: 342–349. https://doi.org/10.1097/MCG.0b013e31818a3854.

    Article  CAS  PubMed  Google Scholar 

  33. Kon, K., K. Ikejima, K. Okumura, T. Aoyama, K. Arai, Y. Takei, J.J. Lemasters, and N. Sato. 2007. Role of apoptosis in acetaminophen hepatotoxicity. Journal of Gastroenterology and Hepatology 22 (Suppl 1): S49–S52. https://doi.org/10.1111/j.1440-1746.2007.04962.x.

    Article  CAS  PubMed  Google Scholar 

  34. Jin, J., H. Xue, X. Sun, B. Zan, Y. Li, T. Wang, R. Shi, and Y. Ma. 2019. Simultaneous determination of multiple compounds of Da-Huang-Xiao-Shi decoction in rat plasma by LC-MS/MS and its application in a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 174: 8–18. https://doi.org/10.1016/j.jpba.2019.05.050.

    Article  CAS  PubMed  Google Scholar 

  35. Bai, J., J. Wu, R. Tang, C. Sun, J. Ji, Z. Yin, G. Ma, and W. Yang. 2020. Emodin a natural anthraquinone suppresses liver cancer in vitro and in vivo by regulating VEGFR(2) and miR-34a. Investigational New Drugs 38: 229–245. https://doi.org/10.1007/s10637-019-00777-5.

    Article  CAS  PubMed  Google Scholar 

  36. Du, C., L. Shi, M. Wang, P. Mao, J. Wang, Y. Wei, J. Hou, and M. Wang. 2019. Emodin attenuates Alzheimer’s disease by activating the protein kinase C signaling pathway. Cellular and Molecular Biology 65: 32–37.

    Article  Google Scholar 

  37. Monisha, B.A., N. Kumar, and A.B. Tiku. 2016. Emodin and Its Role in Chronic Diseases. Advances in Experimental Medicine and Biology 928: 47–73. https://doi.org/10.1007/978-3-319-41334-1_3.

    Article  CAS  PubMed  Google Scholar 

  38. Dang, S.S., X.L. Jia, P. Song, Y.A. Cheng, X. Zhang, M.Z. Sun, and E.Q. Liu. 2009. Inhibitory effect of emodin and Astragalus polysaccharide on the replication of HBV. World Journal of Gastroenterology 15: 5669–5673. https://doi.org/10.3748/wjg.15.5669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jessick, V.J., M. Xie, A.N. Pearson, D.J. Torrey, M.D. Ashley, S. Thompson, and R. Meller. 2013. Investigating the role of the actin regulating complex ARP2/3 in rapid ischemic tolerance induced neuro-protection. International Journal of Physiology Pathophysiology and Pharmacology 5: 216–227.

    Google Scholar 

  40. McGill, M.R., M.R. Sharpe, C.D. Williams, M. Taha, S.C. Curry, and H. Jaeschke. 2012. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. The Journal of Clinical Investigation 122: 1574–1583. https://doi.org/10.1172/jci59755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson, S.D. 1990. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Seminars in Liver Disease 10: 267–278. https://doi.org/10.1055/s-2008-1040482.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshioka, H., Y. Ichimaru, S. Fukaya, A. Nagatsu, and T. Nonogaki. 2018. Potentiating effect of acetaminophen and carbon tetrachloride-induced hepatotoxicity is mediated by activation of receptor interaction protein in mice. Toxicology Mechanisms and Methods 28: 615–621. https://doi.org/10.1080/15376516.2018.1485804.

    Article  CAS  PubMed  Google Scholar 

  43. Jaeschke, H., A. Ramachandran, X. Chao, and W.X. Ding. 2019. Emerging and established modes of cell death during acetaminophen-induced liver injury. Archives of Toxicology 93: 3491–3502. https://doi.org/10.1007/s00204-019-02597-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo, H., J. Sun, D. Li, Y. Hu, X. Yu, H. Hua, X. Jing, F. Chen, Z. Jia, and J. Xu. 2019. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomedicine & Pharmacotherapy 112: 108704. https://doi.org/10.1016/j.biopha.2019.108704.

    Article  CAS  Google Scholar 

  45. Lee, K.K., N. Imaizumi, S.R. Chamberland, N.N. Alder, and U.A. Boelsterli. 2015. Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology 61: 326–336. https://doi.org/10.1002/hep.27385.

    Article  CAS  PubMed  Google Scholar 

  46. Clemens, M.M., S. Kennon-McGill, U. Apte, L.P. James, B.N. Finck, and M.R. McGill. 2019. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food and Chemical Toxicology 125: 279–288. https://doi.org/10.1016/j.fct.2019.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marrocco, I., F. Altieri, and I. Peluso. 2017. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Medicine and Cellular Longevity 2017: 6501046. https://doi.org/10.1155/2017/6501046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Porto, H.K.P., M.D. Grando, L.N.Z. Ramalho, M.C. Valadares, L.M. Bendhack, A.C. Batista, and M.L. Rocha. 2019. Exposure to acetaminophen impairs vasodilation increases oxidative stress and changes arterial morphology of rats. Archives of Toxicology 93: 1955–1964. https://doi.org/10.1007/s00204-019-02463-0.

    Article  CAS  PubMed  Google Scholar 

  49. Shi, A., H. Shi, Y. Wang, X. Liu, Y. Cheng, H. Li, H. Zhao, S. Wang, and L. Dong. 2018. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. International Immunopharmacology 54: 125–130. https://doi.org/10.1016/j.intimp.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  50. He, F., X. Ru, and T. Wen. 2020. NRF2 a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences 21 (13): 4777. https://doi.org/10.3390/ijms21134777.

    Article  CAS  PubMed Central  Google Scholar 

  51. Lee, S., and L. Hu. 2020. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Medicinal Chemistry Research 29: 846–867. https://doi.org/10.1007/s00044-020-02539-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, S., G. Kuang, R. Jiang, S. Wu, T. Zeng, Y. Wang, F. Xu, L. Xiong, X. Gong, and J. Wan. 2019. Geniposide protected hepatocytes from acetaminophen hepatotoxicity by down-regulating CYP 2E1 expression and inhibiting TLR 4/NF-κB signaling pathway. International Immunopharmacology 74: 105625. https://doi.org/10.1016/j.intimp.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  53. Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P.L. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22: 1111–1129. https://doi.org/10.1089/ars.2014.5994.

    Article  CAS  Google Scholar 

  54. Li, S., Q. Lin, X. Shao, S. Mou, L. Gu, L. Wang, Z. Zhang, J. Shen, Y. Zhou, C. Qi, et al. 2019. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Experimental Cell Research 383: 111488. https://doi.org/10.1016/j.yexcr.2019.07.001.

    Article  CAS  PubMed  Google Scholar 

  55. Shan, S., Z. Shen, C. Zhang, R. Kou, K. Xie, and F. Song. 2019. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation. Biochemical Pharmacology 169: 113643. https://doi.org/10.1016/j.bcp.2019.113643.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, X., X. Zhang, Y. Ding, W. Zhou, L. Tao, P. Lu, Y. Wang, and R. Hu. 2017. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxidants & Redox Signaling 26: 28–43. https://doi.org/10.1089/ars.2015.6615.

    Article  CAS  Google Scholar 

  57. Roh, J.S., and D.H. Sohn. 2018. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Network 18: e27. https://doi.org/10.4110/in.2018.18.e27.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dinant, S., R.L. Veteläinen, S. Florquin, A.K. van Vliet, and T.M. van Gulik. 2007. IL-10 attenuates hepatic I/R injury and promotes hepatocyte proliferation. The Journal Of Surgical Research 141: 176–182. https://doi.org/10.1016/j.jss.2006.09.018.

    Article  CAS  PubMed  Google Scholar 

  59. Thompson, K., J. Maltby, J. Fallowfield, M. McAulay, H. Millward-Sadler, and N. Sheron. 1998. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28: 1597–1606. https://doi.org/10.1002/hep.510280620.

    Article  CAS  PubMed  Google Scholar 

  60. Ramachandran, A., and H. Jaeschke. 2019. Acetaminophen Hepatotoxicity. Seminars In Liver Disease 39: 221–234. https://doi.org/10.1055/s-0039-1679919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alhusaini, A.M., L.M. Faddah, I.H. Hasan, S.J. Jarallah, S.H. Alghamdi, N.M. Alhadab, A. Badr, N. Elorabi, E. Zakaria, and A. Al-Anazi. 2019. Vitamin C and Turmeric Attenuate Bax and Bcl-2 Proteins’ Expressions and DNA Damage in Lead Acetate-Induced Liver Injury. Dose-Response 17: 1559325819885782. https://doi.org/10.1177/1559325819885782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Volpe, C.M.O., P.H. Villar-Delfino, P.M.F. Dos Anjos, and J.A. Nogueira-Machado. 2018. Cellular death reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease 9: 119. https://doi.org/10.1038/s41419-017-0135-z.

    Article  CAS  Google Scholar 

  63. Gao, D., J. Wu, Y.T. Wu, F. Du, C. Aroh, N. Yan, L. Sun, and Z.J. Chen. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341: 903–906. https://doi.org/10.1126/science.1240933.

    Article  CAS  PubMed  Google Scholar 

  64. Civril, F., T. Deimling, C.C. de Oliveira Mann, A. Ablasser, M. Moldt, G. Witte, V. Hornung, and K.P. Hopfner. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498: 332–337. https://doi.org/10.1038/nature12305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai, X., Y.H. Chiu, and Z.J. Chen. 2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Molecular Cell 54: 289–296. https://doi.org/10.1016/j.molcel.2014.03.040.

    Article  CAS  PubMed  Google Scholar 

  66. Kwon, J., and S.F. Bakhoum. 2020. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discovery 10: 26–39. https://doi.org/10.1158/2159-8290.Cd-19-0761.

    Article  CAS  PubMed  Google Scholar 

  67. Ishikawa, H., Z. Ma, and G.N. Barber. 2009. STING regulates intracellular DNA-mediated type I interferon-dependent innate immunity. Nature 461: 788–792. https://doi.org/10.1038/nature08476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiao, J.T., C. Cui, L. Qing, L.S. Wang, T.Y. He, F. Yan, F.Q. Liu, Y.H. Shen, X.G. Hou, and L. Chen. 2018. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism 81: 13–24. https://doi.org/10.1016/j.metabol.2017.09.010.

    Article  CAS  PubMed  Google Scholar 

  69. Burdette, D.L., K.M. Monroe, K. Sotelo-Troha, J.S. Iwig, B. Eckert, M. Hyodo, Y. Hayakawa, and R.E. Vance. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478: 515–518. https://doi.org/10.1038/nature10429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Du, S., G. Chen, B. Yuan, Y. Hu, P. Yang, Y. Chen, Q. Zhao, J. Zhou, J. Fan, and Z. Zeng. 2020. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury. Cellular & Molecular Immunology. https://doi.org/10.1038/s41423-020-0395-x.

    Article  PubMed  Google Scholar 

  71. Luo, X., H. Li, L. Ma, J. Zhou, X. Guo, S.L. Woo, Y. Pei, L.R. Knight, M. Deveau, Y. Chen, et al. 2018. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology 155: 1971–1984. https://doi.org/10.1053/j.gastro.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  72. Thomsen, M.K., R. Nandakumar, D. Stadler, A. Malo, R.M. Valls, F. Wang, L.S. Reinert, F. Dagnaes-Hansen, A.K. Hollensen, J.G. Mikkelsen, et al. 2016. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology 64: 746–759. https://doi.org/10.1002/hep.28685.

    Article  CAS  PubMed  Google Scholar 

  73. He, Y., D. Feng, M. Li, Y. Gao, T. Ramirez, H. Cao, S.J. Kim, Y. Yang, Y. Cai, C. Ju, et al. 2017. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology 66: 220–234. https://doi.org/10.1002/hep.29153.

    Article  CAS  PubMed  Google Scholar 

  74. Araujo, A.M., M.M. Antunes, M.S. Mattos, A.B. Diniz, D.M. Alvarenga, B.N. Nakagaki, É. Carvalho, V.A.S. Lacerda, R. Carvalho-Gontijo, J. Goulart, et al. 2018. Liver Immune Cells Release Type 1 Interferon Due to DNA Sensing and Amplify Liver Injury from Acetaminophen Overdose. Cells 7 (8): 88. https://doi.org/10.3390/cells7080088.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphic abstract was created by www.BioRender.com.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81903965).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Qiong Liu; methodology, Pan Shen; validation, Zhe Cheng; investigation, Pan Shen; data curation, Pan Shen; writing—original draft preparation, Pan Shen; writing—review and editing, Qiong Liu, Liang Han, Guang Chen; visualization, Pan Shen; supervision, Qiong Liu.

Corresponding author

Correspondence to Qiong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental procedures were approved and carried out in accordance with Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Care Committee guidelines.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, P., Han, L., Chen, G. et al. Emodin Attenuates Acetaminophen-Induced Hepatotoxicity via the cGAS-STING Pathway. Inflammation 45, 74–87 (2022). https://doi.org/10.1007/s10753-021-01529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01529-5

KEY WORDS:

Navigation