Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Silencing of CREB Inhibits HDAC2/TLR4/NF-κB Cascade to Relieve Severe Acute Pancreatitis-Induced Myocardial Injury

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

This article was retracted on 15 February 2024

This article has been updated

Abstract

The purpose of the present study is to investigate the role of CREB in cardiomyocytes proliferation in regulation of HDAC2-dependent TLR4/NF-κB pathway in severe acute pancreatitis (SAP)-induced myocardial injury. The SAP rat model was developed by injecting sodium touracholate into SD rats and then infected with lentivirus vectors expressing sh-CREB in the presence/absence of LPS. The pathological alterations of rat pancreatic and cardiac tissues were observed by HE staining. TUNEL assay was used to study apoptosis of cardiomyocytes. Next, the loss- and gain-function assay was conducted in LPS-induced myocardial injury cardiomyocytes to define the roles of CREB, HDAC2, and TLR4 in cardiomyocyte proliferation, apoptosis, inflammation, and myocardial injury in vitro. ChIP assay was used to study the enrichment of CREB bound to HDAC2 promoter. RT-qPCR and Western blot analysis were used to detect the expressions of related mRNA and proteins in the NF-κB pathway, respectively. CREB was found to be overexpressed in both SAP tissues and cells. CREB directly bound to the promoter of HDAC2 and activated its expression. Overexpressed CREB or HDAC2 inhibited proliferation and promoted apoptosis of cardiomyocytes. Suppression of CREB inhibited the HDAC2/TLR4/NF-κB cascade to promote proliferation and inhibit apoptosis of cardiomyocytes. The in vitro results were validated in vivo experiments. Coherently, suppression of CREB can inhibit HDAC2/TLR4/NF-κB cascade to promote cardiomyocyte proliferation, thus ameliorating SAP-induced myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Gill, P., and A.H. Amree. 2019. Allele-specific loop-mediated isothermal amplification for the detection of IVSII-I G>A Mutation On beta-Globin Gene. Open Access Macedonian Journal of Medical Sciences 7 (10): 1582–1587.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zerem, E. 2014. Treatment of severe acute pancreatitis and its complications. World Journal of Gastroenterology 20 (38): 13879–13892.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yegneswaran, B., J.B. Kostis, and C.S. Pitchumoni. 2011. Cardiovascular manifestations of acute pancreatitis. Journal of Critical Care 26 (2): 225 e211–225 e228.

    Article  Google Scholar 

  4. Xiping, Z., T. Hua, C. Hanqing, C. Li, W. Zhiwei, W. Keyi, Y. Wei, L. Yun, L. Qingyu, H. Qing, and W. Fei. 2007. The protecting effects and mechanisms of baicalin and octreotide on heart injury in rats with SAP. Mediators of Inflammation 2007: 19469.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, L., Y.Q. Li, Z.W. Sun, C.M. Xu, J. Wu, G.L. Liu, A.M. Bakheet, and H.L. Chen. 2020. Qingyi decoction protects against myocardial injuries induced by severe acute pancreatitis. World Journal of Gastroenterology 26 (12): 1317–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Portelli, M., and C.D. Jones. 2017. Severe acute pancreatitis: pathogenesis, diagnosis and surgical management. Hepatobiliary & Pancreatic Diseases International 16 (2): 155–159.

    Article  CAS  Google Scholar 

  7. Habtezion, A., A.S. Gukovskaya, and S.J. Pandol. 2019. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology 156 (7): 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  8. Feng, W., R. Teng, Y. Zhao, J. Gao, and H. Chu. 2015. Epigenetic modulation of Wnt signaling contributes to neuropathic pain in rats. Molecular Medicine Reports 12 (3): 4727–4733.

    Article  CAS  PubMed  Google Scholar 

  9. Ma, X., D. Wu, S. Zhou, F. Wan, H. Liu, X. Xu, X. Xu, Y. Zhao, and M. Tang. 2016. The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncology Reports 35 (1): 189–196.

    Article  CAS  PubMed  Google Scholar 

  10. Chan, Y.C., and P.S. Leung. 2009. Involvement of redox-sensitive extracellular-regulated kinases in angiotensin II-induced interleukin-6 expression in pancreatic acinar cells. The Journal of Pharmacology and Experimental Therapeutics 329 (2): 450–458.

    Article  CAS  PubMed  Google Scholar 

  11. Toussirot, E., D. Wendling, G. Herbein, and Cic. 2014. Biological treatments given in patients with rheumatoid arthritis or ankylosing spondylitis modify HAT/HDAC (histone acetyltransferase/histone deacetylase) balance. Joint, Bone, Spine 81 (6): 544–545.

    Article  PubMed  Google Scholar 

  12. Guo, P., W. Chen, H. Li, M. Li, and L. Li. 2018. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathology Oncology Research 24 (4): 807–813.

    Article  CAS  PubMed  Google Scholar 

  13. Liao, Y.H., J. Wang, Y.Y. Wei, T. Zhang, Y. Zhang, Z.F. Zuo, X.Y. Teng, and Y.Q. Li. 2018. Histone deacetylase 2 is involved in microopioid receptor suppression in the spinal dorsal horn in a rat model of chronic pancreatitis pain. Molecular Medicine Reports 17 (2): 2803–2810.

    CAS  PubMed  Google Scholar 

  14. Jahan, S., J.M. Sun, S. He, and J.R. Davie. 2018. Transcription-dependent association of HDAC2 with active chromatin. Journal of Cellular Physiology 233 (2): 1650–1657.

    Article  CAS  PubMed  Google Scholar 

  15. Jiao, F.Z., Y. Wang, H.Y. Zhang, W.B. Zhang, L.W. Wang, and Z.J. Gong. 2018. Histone deacetylase 2 inhibitor CAY10683 alleviates lipopolysaccharide induced neuroinflammation through attenuating TLR4/NF-kappaB signaling pathway. Neurochemical Research 43 (6): 1161–1170.

    Article  CAS  PubMed  Google Scholar 

  16. Hong, Y.P., J. Yu, Y.R. Su, F.C. Mei, M. Li, K.L. Zhao, L. Zhao, W.H. Deng, C. Chen, and W.X. Wang. 2020. High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats. Oxidative Medicine and Cellular Longevity 2020: 8172714.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jakkampudi, A., R. Jangala, B.R. Reddy, S. Mitnala, D. Nageshwar Reddy, and R. Talukdar. 2016. NF-kappaB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology 16 (4): 477–488.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z., J. Liu, K. Zhao, Q. Shi, T. Zuo, G. Wang, and W. Wang. 2016. Role of daphnetin in rat severe acute pancreatitis through the regulation of TLR4/NF-[formula: see text]B signaling pathway activation. The American Journal of Chinese Medicine 44 (1): 149–163.

    Article  CAS  PubMed  Google Scholar 

  19. Li, L., Z. Sun, C. Xu, J. Wu, G. Liu, H. Cui, and H. Chen. 2018. Adenovirus-mediated overexpression of sST2 attenuates cardiac injury in the rat with severe acute pancreatitis. Life Sciences 202: 167–174.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., and M. Chen. 2017. Fentanyl ameliorates severe acute pancreatitis-induced myocardial injury in rats by regulating NF-kappaB signaling pathway. Medical Science Monitor 23: 3276–3283.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu, J., J. Wang, X. Li, X. Liu, X. Yu, and Y. Tian. 2017. MicroRNA-145 Mediates the formation of angiotensin II-induced murine abdominal aortic aneurysm. Heart, Lung & Circulation 26 (6): 619–626.

    Article  Google Scholar 

  22. Ayuk, S.M., H. Abrahamse, and N.N. Houreld. 2016. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. Journal of Photochemistry and Photobiology. B 161: 368–374.

    Article  CAS  Google Scholar 

  23. Al-Wadei, H.A., M.H. Al-Wadei, and H.M. Schuller. 2009. Prevention of pancreatic cancer by the beta-blocker propranolol. Anti-Cancer Drugs 20 (6): 477–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hulsurkar, M., Z. Li, Y. Zhang, X. Li, D. Zheng, and W. Li. 2017. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 36 (11): 1525–1536.

    Article  CAS  PubMed  Google Scholar 

  25. Tang, D., Y.C. Zhao, D. Qian, H. Liu, S. Luo, E.F. Patz, P.G. Moorman, L. Su, S. Shen, D.C. Christiani, C. Glass, W. Gao, and Q. Wei. 2020. Novel genetic variants in HDAC2 and PPARGC1A of the CREB-binding protein pathway predict survival of non-small-cell lung cancer. Molecular Carcinogenesis 59 (1): 104–115.

    Article  CAS  PubMed  Google Scholar 

  26. Sandoval, J., J. Pereda, J.L. Rodriguez, J. Escobar, J. Hidalgo, L.A. Joosten, L. Franco, J. Sastre, and G. Lopez-Rodas. 2010. Ordered transcriptional factor recruitment and epigenetic regulation of tnf-alpha in necrotizing acute pancreatitis. Cellular and Molecular Life Sciences 67 (10): 1687–1697.

    Article  CAS  PubMed  Google Scholar 

  27. Ouaissi, M., F. Silvy, C. Loncle, D. Ferraz da Silva, C. Martins Abreu, E. Martinez, P. Berthezene, S. Cadra, Y.P. Le Treut, J. Hardwigsen, B. Sastre, I. Sielezneff, L. Benkoel, J. Delgrande, A. Ouaissi, J. Iovanna, D. Lombardo, and E. Mas. 2014. Further characterization of HDAC and SIRT gene expression patterns in pancreatic cancer and their relation to disease outcome. PLoS One 9 (9): e108520.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Sandoval, J., J. Pereda, S. Perez, I. Finamor, A. Vallet-Sanchez, J.L. Rodriguez, L. Franco, J. Sastre, and G. Lopez-Rodas. 2016. Epigenetic regulation of early- and late-response genes in acute pancreatitis. Journal of Immunology 197 (10): 4137–4150.

    Article  CAS  Google Scholar 

  29. John, S.P., J. Sun, R.J. Carlson, B. Cao, C.J. Bradfield, J. Song, M. Smelkinson, and I.D.C. Fraser. 2018. IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Reports 25 (1): 95–106 e106.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y., H. Chen, Q. Chen, F.Z. Jiao, W.B. Zhang, and Z.J. Gong. 2018. The protective mechanism of CAY10683 on intestinal mucosal barrier in acute liver failure through LPS/TLR4/MyD88 pathway. Mediators of Inflammation 2018: 7859601.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Du, P., K. Gao, Y. Cao, S. Yang, Y. Wang, R. Guo, M. Zhao, and S. Jia. 2019. RFX1 downregulation contributes to TLR4 overexpression in CD14(+) monocytes via epigenetic mechanisms in coronary artery disease. Clinical Epigenetics 11 (1): 44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan, L.F., L. Yu, L.M. Wang, J.T. He, J.L. Sun, X.B. Wang, H. Wang, Z.H. Bai, H. Feng, and H.H. Pei. 2018. Augmenter of liver regeneration (ALR) regulates acute pancreatitis via inhibiting HMGB1/TLR4/NF-kappaB signaling pathway. American Journal of Translational Research 10 (2): 402–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, G., X. Wu, L. Yang, Y. He, Y. Liu, X. Jin, and H. Yuan. 2016. TLR4-mediated NF-kappaB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. International Journal of Molecular Medicine 37 (1): 99–107.

    Article  PubMed  Google Scholar 

  34. Wang, B., X.B. Xu, X.X. Jin, X.W. Wu, M.L. Li, M.X. Guo, and X.H. Zhang. 2017. Effects of omega-3 fatty acids on toll-like receptor 4 and nuclear factor kappaB p56 in the pancreas of rats with severe acute pancreatitis. Pancreas 46 (10): 1267–1274.

    Article  CAS  PubMed  Google Scholar 

  35. Su, S., T. Liang, X. Zhou, K. He, B. Li, and X. Xia. 2019. Qingyi decoction attenuates severe acute pancreatitis in rats via inhibition of inflammation and protection of the intestinal barrier. The Journal of International Medical Research 47 (5): 2215–2227.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, J., C. Zhang, P. Xu, Z.W. Yang, C.Z. Weng, and Y.X. Lai. 2018. Phosphoinositide 3kinase/protein kinase B regulates inflammation severity via signaling of tolllike receptor 4 in severe acute pancreatitis. Molecular Medicine Reports 17 (6): 7835–7844.

    CAS  PubMed  Google Scholar 

  37. Kylanpaa, L., Z. Rakonczay Jr., and D.A. O'Reilly. 2012. The clinical course of acute pancreatitis and the inflammatory mediators that drive it. International Journal of Inflammation 2012: 360685.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Escobar, J., J. Pereda, A. Arduini, J. Sandoval, L. Sabater, L. Aparisi, G. Lopez-Rodas, and J. Sastre. 2010. Protein phosphatases and chromatin modifying complexes in the inflammatory cascade in acute pancreatitis. World Journal of Gastrointestinal Pharmacology and Therapeutics 1 (3): 75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lim, B., K. Jung, Y. Gwon, J.G. Oh, J.I. Roh, S.H. Hong, C. Kho, W.J. Park, H.W. Lee, J.W. Bae, and Y.K. Jung. 2019. Cardioprotective role of APIP in myocardial infarction through ADORA2B. Cell Death & Disease 10 (7): 511.

    Article  CAS  Google Scholar 

  40. Zhang, B., P. Zhang, Y. Tan, P. Feng, Z. Zhang, H. Liang, W. Duan, Z. Jin, X. Wang, J. Liu, E. Gao, S. Yu, D. Yi, Y. Sun, and W. Yi. 2019. C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Cell Death & Disease 10 (7): 520.

    Article  Google Scholar 

  41. Wullaert, A. 2010. Role of NF-kappaB activation in intestinal immune homeostasis. International Journal of Medical Microbiology 300 (1): 49–56.

    Article  CAS  PubMed  Google Scholar 

  42. Noreen, M., M.A. Shah, S.M. Mall, S. Choudhary, T. Hussain, I. Ahmed, S.F. Jalil, and M.I. Raza. 2012. TLR4 polymorphisms and disease susceptibility. Inflammation Research 61 (3): 177–188.

    Article  CAS  PubMed  Google Scholar 

  43. Sharif, R., R. Dawra, K. Wasiluk, P. Phillips, V. Dudeja, E. Kurt-Jones, R. Finberg, and A. Saluja. 2009. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut 58 (6): 813–819.

    Article  CAS  PubMed  Google Scholar 

  44. Ding, S.Q., Y. Li, Z.G. Zhou, C. Wang, L. Zhan, and B. Zhou. 2010. Toll-like receptor 4-mediated apoptosis of pancreatic cells in cerulein-induced acute pancreatitis in mice. Hepatobiliary & Pancreatic Diseases International 9 (6): 645–650.

    CAS  Google Scholar 

  45. Sah, R.P., R.K. Dawra, and A.K. Saluja. 2013. New insights into the pathogenesis of pancreatitis. Current Opinion in Gastroenterology 29 (5): 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Z., Y. Deng, D. Su, J. Tian, Y. Gao, Z. He, and X. Wang. 2013. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Laboratory Investigation 93 (7): 792–800.

    Article  CAS  PubMed  Google Scholar 

  47. Su, Y.R., Y.P. Hong, F.C. Mei, C.Y. Wang, M. Li, Y. Zhou, K.L. Zhao, J. Yu, and W.X. Wang. 2019. High-fat diet aggravates the intestinal barrier injury via TLR4-RIP3 pathway in a rat model of severe acute pancreatitis. Mediators of Inflammation 2019: 2512687.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin, M., J. Huang, W.C. Chen, Z.N. Fan, and X. Qin. 2020. The immunomodulatory effects and mechanisms of Tim-3 action in the early stage of mice with severe acute pancreatitis. Iranian Journal of Immunology 17 (1): 52–63.

    PubMed  Google Scholar 

  49. Zheng, J., L. Lou, J. Fan, C. Huang, Q. Mei, J. Wu, Y. Guo, Y. Lu, X. Wang, and Y. Zeng. 2019. Commensal Escherichia coli aggravates acute necrotizing pancreatitis through targeting of intestinal epithelial cells. Applied and Environmental Microbiology 85 (12).

Download references

Acknowledgements

We would like to acknowledge the reviewers for their helpful comments on this paper.

Funding

This work was supported by Scientific Research Fund Project of Shaanxi Provincial Health and Family Planning Commission (No. 2016D015), Science and Technology Planning Project of Xi’an (No. 2017113SF/YX007(15)), and Shaanxi Provincial Science and Technology Research Subject of Traditional Chinese Medicine (No. 2019-ZZ-JC031).

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception and design: Longfei Pan, Zequn Niu, Yanxia Gao; (II) administrative support: Yanxia Gao, Liming Wang, Zhong Liu, Jie Liu; (III) provision of study materials: Jiangli Sun, Honghong Pei; (IV) collection and assembly of data: Longfei Pan, Zequn Niu, Yanxia Gao; (V) data analysis and interpretation: Longfei Pan, Zequn Niu, Jiangli Sun; (VI) manuscript writing: Zequn Niu, Yanxia Gao; (VII) final approval of manuscript: all authors.

Corresponding author

Correspondence to Longfei Pan.

Ethics declarations

Ethics Approval and Consent to Participate

The study and procedures were complied with the Laboratory Animal Care and Use Guide (NIH Publication NO. 85-23, revised 2011). Animal study was approved by the laboratory animal care committee of Xi’an Jiaotong University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10753-024-01987-7"

Supplementary Information

ESM 1

(DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Niu, Z., Gao, Y. et al. RETRACTED ARTICLE: Silencing of CREB Inhibits HDAC2/TLR4/NF-κB Cascade to Relieve Severe Acute Pancreatitis-Induced Myocardial Injury. Inflammation 44, 1565–1580 (2021). https://doi.org/10.1007/s10753-021-01441-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01441-y

KEY WORDS

Navigation