Skip to main content
Log in

Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

C-reactive protein (CRP) is a major human acute-phase reactant that is composed of five identical subunits. CRP dissociates into subunits at inflammatory loci forming monomeric CRP (mCRP) with substantially enhanced activities, which can be further activated by reducing the intra-subunit disulfide bond. However, conformational changes underlying the activation process of CRP are less well understood. Conformational changes accompanying the conversion of CRP to mCRP with or without reduction were examined with circular dichroism spectroscopy, fluorescence spectroscopy, electron microscopy, size-exclusion chromatography, and neoepitope expression. The conversion of CRP to mCRP follows a two-stage process. In the first stage, CRP dissociates into molten globular subunits characterized by intact secondary structure elements with greatly impaired tertiary packing. In the second stage, these intermediates completely lose their native subunit conformation and assemble into high-order aggregates. The inclusion of reductant accelerates the formation of molten globular subunits in the first step and promotes the formation of more compact aggregates in the second stage. We further show a significant contribution of electrostatic interactions to the stabilization of native CRP. The conformational features of dissociated subunits and the aggregation of mCRP may have a key impact on their activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pepys, M.B., and G.M. Hirschfield. 2003. C-reactive protein: A critical update. The Journal of Clinical Investigation 111: 1805–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh, S.K., M.V. Suresh, B. Voleti, and A. Agrawal. 2008. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 40: 110–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Khreiss, T., L. Jớzsef, L.A. Potempa, and J.G. Filep. 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109: 2016–2022.

    CAS  PubMed  Google Scholar 

  4. Khreiss, T., L. Jozsef, L.A. Potempa, and J.G. Filep. 2005. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circulation Research 97: 690–697.

    CAS  PubMed  Google Scholar 

  5. Ji, S.R., Y. Wu, L.A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology 38: 648–661.

    CAS  Google Scholar 

  6. Ji, S.R., Y. Wu, L.A. Potempa, Y.H. Liang, and J. Zhao. 2006. Effect of Modified C-reactive protein on complement activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thrombosis, and Vascular Biology 26: 935–941.

    CAS  Google Scholar 

  7. McFadyen, J.D., J. Kiefer, D. Braig, J. Loseff-Silver, L.A. Potempa, S.U. Eisenhardt, and K. Peter. 2018. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in Immunology 9: 1351.

    PubMed  PubMed Central  Google Scholar 

  8. Jia, Z.K., H.Y. Li, Y.L. Liang, L.A. Potempa, S.R. Ji, and Y. Wu. 2018. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-kappaB ligand-induced osteoclast differentiation. Frontiers in Immunology 9: 234.

    PubMed  PubMed Central  Google Scholar 

  9. Li, Q.Y., H.Y. Li, G. Fu, F. Yu, Y. Wu, and M.H. Zhao. 2017. Autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. Journal of American Society of Nephrology 28: 3044–3054.

    CAS  Google Scholar 

  10. Li, H.Y., J. Wang, F. Meng, Z.K. Jia, Y. Su, Q.F. Bai, L.L. Lv, F.R. Ma, L.A. Potempa, Y.B. Yan, S.R. Ji, and Y. Wu. 2016. An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. The Journal of Biological Chemistry 291: 8795–8804.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, M.Y., S.R. Ji, C.J. Bai, D. El Kebir, H.Y. Li, J.M. Shi, W. Zhu, S. Costantino, H.H. Zhou, L.A. Potempa, J. Zhao, J.G. Filep, and Y. Wu. 2011. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal 25: 3186–3196.

    CAS  PubMed  Google Scholar 

  12. Li, S.L., J.R. Feng, H.H. Zhou, C.M. Zhang, G.B. Lv, Y.B. Tan, Z.B. Ge, and M.Y. Wang. 2018. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology 104: 47–53.

    CAS  PubMed  Google Scholar 

  13. Singh, S.K., A. Thirumalai, A. Pathak, D.N. Ngwa, and A. Agrawal. 2017. Functional Transformation of C-reactive protein by hydrogen peroxide. The Journal of Biological Chemistry 292: 3129–3136.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammond, D.J., Jr., S.K. Singh, J.A. Thompson, B.W. Beeler, A.E. Rusinol, M.K. Pangburn, L.A. Potempa, and A. Agrawal. 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. The Journal of Biological Chemistry 285: 36235–36244.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisenhardt, S.U., J. Habersberger, A. Murphy, Y.C. Chen, K.J. Woollard, N. Bassler, H. Qian, C. von Zur Muhlen, C.E. Hagemeyer, I. Ahrens, J. Chin-Dusting, A. Bobik, and K. Peter. 2009. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research 105: 128–137.

    CAS  PubMed  Google Scholar 

  16. Thiele, J.R., J. Habersberger, D. Braig, Y. Schmidt, K. Goerendt, V. Maurer, H. Bannasch, A. Scheichl, K.J. Woollard, E. von Dobschutz, F. Kolodgie, R. Virmani, G.B. Stark, K. Peter, and S.U. Eisenhardt. 2014. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50.

    CAS  PubMed  Google Scholar 

  17. Ji, S.R., Y. Wu, L. Zhu, L.A. Potempa, F.L. Sheng, W. Lu, and J. Zhao. 2007. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). The FASEB Journal 21: 284–294.

    CAS  PubMed  Google Scholar 

  18. Habersberger, J., F. Strang, A. Scheichl, N. Htun, N. Bassler, R.M. Merivirta, P. Diehl, G. Krippner, P. Meikle, S.U. Eisenhardt, I. Meredith, and K. Peter. 2012. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research 96: 64–72.

    CAS  PubMed  Google Scholar 

  19. Lv, J.M., S.Q. Lu, Z.P. Liu, J. Zhang, B.X. Gao, Z.Y. Yao, Y.X. Wu, L.A. Potempa, S.R. Ji, M. Long, and Y. Wu. 2018. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Scientific Reports 8: 1494.

    PubMed  PubMed Central  Google Scholar 

  20. Potempa, L.A., B.A. Maldonado, P. Laurent, E.S. Zemel, and H. Gewurz. 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology 20: 1165–1175.

    CAS  PubMed  Google Scholar 

  21. Khreiss, T., L. Jozsef, S. Hossain, J.S. Chan, L.A. Potempa, and J.G. Filep. 2002. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry 277: 40775–40781.

    CAS  PubMed  Google Scholar 

  22. Ying, S.C., E. Shephard, F.C. de Beer, J.N. Siegel, D. Harris, B.E. Gewurz, M. Fridkin, and H. Gewurz. 1992. Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology 29: 677–687.

    CAS  PubMed  Google Scholar 

  23. Taylor, K.E., and C.W. van den Berg. 2007. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, S., Y. Cao, S.B. Fan, Z.L. Chen, R.Q. Fang, S.M. He, and M.Q. Dong. 2018. Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. Biophysics Reports 4: 68–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fink, A.L. 1995. Molten globules. Methods in Molecular Biology 40: 343–360.

    CAS  PubMed  Google Scholar 

  26. Volanakis, J.E. 2001. Human C-reactive protein: Expression, structure, and function. Molecular Immunology 38: 189–197.

    CAS  PubMed  Google Scholar 

  27. Monera, O.D., C.M. Kay, and R.S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 3: 1984–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwedler, S.B., J.G. Filep, J. Galle, C. Wanner, and L.A. Potempa. 2006. C-reactive protein: A family of proteins to regulate cardiovascular function. American Journal of Kidney Diseases 47: 212–222.

    CAS  PubMed  Google Scholar 

  29. Schwedler, S.B., K. Amann, K. Wernicke, A. Krebs, M. Nauck, C. Wanner, L.A. Potempa, and J. Galle. 2005. Native C-reactive protein (CRP) increases, whereas modified CRP reduces atherosclerosis in ApoE-knockout-mice. Circulation. 112: 1016–1023.

    CAS  PubMed  Google Scholar 

  30. Braig, D., B. Kaiser, J.R. Thiele, H. Bannasch, K. Peter, G.B. Stark, H.G. Koch, and S.U. Eisenhardt. 2014. A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology 26: 467–478.

    CAS  PubMed  Google Scholar 

  31. Strang, F., A. Scheichl, Y.C. Chen, X. Wang, N.M. Htun, N. Bassler, S.U. Eisenhardt, J. Habersberger, and K. Peter. 2011. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology (Zurich, Switzerland).

  32. Eisenhardt, S.U., J.R. Thiele, H. Bannasch, G.B. Stark, and K. Peter. 2009. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle (Georgetown, Tex.) 8: 3885–3892.

    CAS  Google Scholar 

  33. Ji, S.R., L. Ma, C.J. Bai, J.M. Shi, H.Y. Li, L.A. Potempa, J.G. Filep, J. Zhao, and Y. Wu. 2009. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal 23: 1806–1816.

    CAS  PubMed  Google Scholar 

  34. Breydo, L., and V.N. Uversky. 2015. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters 589: 2640–2648.

    CAS  PubMed  Google Scholar 

  35. Pelton, J.T., and L.R. McLean. 2000. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 277: 167–176.

    CAS  PubMed  Google Scholar 

  36. Lu, J., K.D. Marjon, L.L. Marnell, R. Wang, C. Mold, T.W. Du Clos, and P. Sun. 2011. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America 108: 4974–4979.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujita, Y., A. Kakino, N. Nishimichi, S. Yamaguchi, Y. Sato, S. Machida, L. Cominacini, Y. Delneste, H. Matsuda, and T. Sawamura. 2009. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clinical Chemistry 55: 285–294.

    CAS  PubMed  Google Scholar 

  38. Lu, J., L.L. Marnell, K.D. Marjon, C. Mold, T.W. Du Clos, and P.D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456: 989–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, J., M. Wezeman, X. Zhang, P. Lin, M. Wang, J. Qian, B. Wan, L.W. Kwak, L. Yu, and Q. Yi. 2007. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12: 252–265.

    PubMed  Google Scholar 

  40. Blaschke, F., Y. Takata, E. Caglayan, A. Collins, P. Tontonoz, W.A. Hsueh, and R.K. Tangirala. 2006. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circulation Research 99: e88–e99.

    CAS  PubMed  Google Scholar 

  41. Du Clos, T.W. 2000. Function of C-reactive protein. Annals of Medicine 32: 274–278.

    PubMed  Google Scholar 

  42. Vigushin, D.M., M.B. Pepys, and P.N. Hawkins. 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation 91: 1351–1357.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Motie, M., K.W. Schaul, and L.A. Potempa. 1998. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metabolism and Disposition 26: 977–981.

    CAS  PubMed  Google Scholar 

  44. Singh, S.K., A. Thirumalai, D.J. Hammond Jr., M.K. Pangburn, V.K. Mishra, D.A. Johnson, A.E. Rusinol, and A. Agrawal. 2012. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. The Journal of Biological Chemistry 287: 3550–3558.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yi Wu and Dr. Laijun Lai for the critical reading of the manuscript. We thank the Core Facility of School of Life Sciences, Lanzhou University for technical and instrumental support.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31401101, 31570749, 31960141).

Authors’ Contributions

MW and CZ designed the research. CZ, YT, HZ, ZG, JF, GL, ZS, and YF performed the research. MW, CZ, YT, and HZ analyzed the data and wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yu Wang.

Ethics declarations

Disclosure

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CM., Tan, YB., Zhou, HH. et al. Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms. Inflammation 43, 466–477 (2020). https://doi.org/10.1007/s10753-019-01130-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01130-x

KEY WORDS

Navigation