Skip to main content

Advertisement

Log in

Role of JNK Signaling Pathway in Dexmedetomidine Post-Conditioning-Induced Reduction of the Inflammatory Response and Autophagy Effect of Focal Cerebral Ischemia Reperfusion Injury in Rats

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To investigate the effect of dexmedetomidine post-conditioning on the inflammatory response and autophagy effect of focal cerebral ischemia reperfusion injury in rats, and further to study its potential mechanisms. Water maze was conducted to evaluate spatial learning and memory ability of middle cerebral artery occlusion (MCAO) rats. TTC staining was used to observe the area of cerebral infarction. The expressions of inflammatory factors in serum were detected by ELISA. TUNEL assay, HE staining, and transmission electron microscopy were used to detect the apoptosis of neurons, neuro-cytopathic changes, and the formation of auto-phagosome in hippocampus CA1 region, respectively. The mRNA and protein expression of Beclin-1, Caspase-3, and light chain 3 (LC3) were detected by qRT-PCR and Western blot. Moreover, the activity of C-Jun N-terminal kinase (JNK) pathway was detected by Western blot. The escape latency (EL); cerebral infarction area ratio; positive apoptosis; neuron pathological changes; auto-phagosome numbers; inflammatory factor contents; mRNA and protein expressions of Beclin-1, Caspase-3 and LC3II/I; and the phosphorylation level of JNK were decreased, while the times across platform and the times stayed in the quadrant of the original platform were increased after dexmedetomidine treatment. However, the protective effect of dexmedetomidine on brain injury in MCAO rats was reversed by JNK pathway activator. Dexmedetomidine post-conditioning could improve learning and memory dysfunction caused by MCAO in rats and reduce the inflammatory response and autophagy effect. The mechanism may be related to inhibition of JNK pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, F.Y., X.Y. Fang, and H. Zhang. 2018. Effect of polydatin on expression of p53 and Notch1 in brain tissue of ischemic cerebrovascular disease. Journal of Biological Regulators and Homeostatic Agents 32 (1): 133.

    CAS  PubMed  Google Scholar 

  2. Hartley, A., D.C. Marshall, J.D. Salciccioli, M.B. Sikkel, M. Maruthappu, and J. Shalhoub. 2016. Trends in mortality from ischemic heart disease and cerebrovascular disease in EuropeClinical PERSPECTIVE: 1980 to 2009. Circulation 133 (20): 1916–1926.

    Article  Google Scholar 

  3. Balestrino, M., M. Sarocchi, E. Adriano, and P. Spallarossa. 2016. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids 48 (8): 1955–1967.

    Article  CAS  Google Scholar 

  4. Wang, M., J. Wang, Z. Liu, X. Guo, N. Wang, N. Jia, Y. Zhang, and J. Yuan. 2017. Effects of intermedin on autophagy in cerebral ischemia/reperfusion injury. Neuropeptides 68: 15-21.

    Article  CAS  Google Scholar 

  5. Morselli, E., M.C. Maiuri, M. Markaki, E. Megalou, A. Pasparaki, K. Palikaras, A. Criollo, L. Galluzzi, S.A. Malik, and I. Vitale. 2010. The life span-prolonging effect of Sirtuin-1 is mediated by autophagy. Autophagy 6 (1): 186–188.

    Article  Google Scholar 

  6. Bao, H., A. Benavides, Y. Shi, P. Frost, and A. Lichtenstein. 2009. Effect of autophagy on multiple myeloma cell viability. Molecular Cancer Therapeutics 8 (7): 1974.

    Article  Google Scholar 

  7. Dosenko, V.E., V.S. Nagibin, L.V. Tumanovska, and A.A. Moibenko. 2006. Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? Autophagy 2 (4): 305–306.

    Article  CAS  Google Scholar 

  8. Gu, Y., C. Wang, and A. Cohen. 2004. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Letters 577 (3): 357–360.

    Article  CAS  Google Scholar 

  9. Zhang, X., Y. Dong, X. Zeng, X. Liang, X. Li, W. Tao, H. Chen, Y. Jiang, L. Mei, and S.S. Feng. 2014. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35 (6): 1932–1943.

    Article  CAS  Google Scholar 

  10. Lu, N., B. Wang, X. Deng, H. Zhao, Y. Wang, and D. Li. 2014. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis. Neural Regeneration Research 9 (17): 1599–1605.

    Article  Google Scholar 

  11. Wang, L., P. Wang, H. Dong, S. Wang, H. Chu, W. Yan, and X. Zhang. 2018. Ulk1/FUNDC1 prevents nerve cells from hypoxia-induced apoptosis by promoting cell autophagy. Neurochemical Research 43 (8): 1539–1548.

    Article  CAS  Google Scholar 

  12. Cherra, S.J., S.M. Kulich, G. Uechi, M. Balasubramani, J. Mountzouris, B.W. Day, and C.T. Chu. 2010. Regulation of the autophagy protein LC3 by phosphorylation. The Journal of Cell Biology 190 (4): 533–539.

    Article  CAS  Google Scholar 

  13. Tanida, I., N. Minematsu-Ikeguchi, T. Ueno, and E. Kominami. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1 (2): 84–91.

    Article  CAS  Google Scholar 

  14. Ashkenazi, A., C.F. Bento, T. Ricketts, M. Vicinanza, F. Siddiqi, M. Pavel, F. Squitieri, M.C. Hardenberg, S. Imarisio, and F.M. Menzies. 2017. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545 (7652): 108–111.

    Article  CAS  Google Scholar 

  15. Kawamura, N., A.M. Schmeichel, Y. Wang, J. Schmelzer, and P. Low. 2006. Multiple effects of hypothermia on inflammatory response following ischemia-reperfusion injury in experimental ischemic neuropathy. Experimental Neurology 202 (2): 487–496.

    Article  CAS  Google Scholar 

  16. Shin, I.W., I.S. Jang, S.M. Lee, K.E. Park, S.H. Ok, J.T. Sohn, H.K. Lee, and Y.K. Chung. 2011. Myocardial protective effect by ulinastatin via an anti-inflammatory response after regional ischemia/reperfusion injury in an in vivo rat heart model. Korean Journal of Anesthesiology 61 (6): 499–505.

    Article  CAS  Google Scholar 

  17. Prieto-Moure, B., J.M. Lloris-Carsí, M. Belda-Antolí, L.H. Toledo-Pereyra, and D. Cejalvo-Lapeña. 2016. Allopurinol protective effect of renal ischemia by downregulating TNF-α, IL-1β, and IL-6 response. Journal of Investigative Surgery 30 (3): 143–151.

    Article  Google Scholar 

  18. Xiang, Y., W. Ye, C. Huang, B. Lou, J. Zhang, D. Yu, X. Huang, B. Chen, and M. Zhou. 2017. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochemical and Biophysical Research Communications 487 (4): 820–826.

    Article  CAS  Google Scholar 

  19. Zhong, L., Z.L. Zhang, X. Li, C. Liao, P. Mou, T. Wang, Z. Wang, Z. Wang, M. Wei, and H. Xu. 2017. TREM2/DAP12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Frontiers in Aging Neuroscience 9: 204.

    Article  Google Scholar 

  20. Ge, X.H., G.J. Zhu, D.Q. Geng, H.Z. Zhang, J.M. He, A.Z. Guo, L.L. Ma, and D.H. Yu. 2017. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats. Physiology & Behavior 170: 115–123.

    Article  CAS  Google Scholar 

  21. Hoy, S.M., and G.M. Keating. 2011. Dexmedetomidine: a review of its use for sedation in mechanically ventilated patients in an intensive care setting and for procedural sedation. Drugs 71 (11): 1481–1501.

    Article  CAS  Google Scholar 

  22. Gu, J., P. Sun, H. Zhao, H.R. Watts, R.D. Sanders, N. Terrando, P. Xia, M. Maze, and D. Ma. 2011. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Critical Care 15 (3): R153.

    Article  Google Scholar 

  23. Ibacache, M., G. Sanchez, Z. Pedrozo, F. Galvez, C. Humeres, G. Echevarria, J. Duaso, M. Hassi, L. Garcia, and G. Díazaraya. 2012. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochimica et Biophysica Acta 1822 (4): 537–545.

    Article  CAS  Google Scholar 

  24. Si, Y., H. Bao, L. Han, H. Shi, Y. Zhang, L. Xu, C. Liu, J. Wang, X. Yang, and A. Vohra. 2013. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. Journal of Translational Medicine 11: 141.

    Article  CAS  Google Scholar 

  25. Yeda, X., L. Shaoqing, H. Yayi, Z. Bo, W. Huaxin, C. Hong, X. Zhongyuan, X. Yeda, L. Shaoqing, and H. Yayi. 2017. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the P38-MAPK/TXNIP signaling activation in streptozotocin induced diabetic rats. Acta Cirúrgica Brasileira 32 (6): 429–439.

    Article  Google Scholar 

  26. Huang, J., X. Ye, Y. You, W. Liu, Y. Gao, S. Yang, J. Peng, Z. Hong, J. Tao, and L. Chen. 2014. Electroacupuncture promotes neural cell proliferation in vivo through activation of the ERK1/2 signaling pathway. International Journal of Molecular Medicine 33 (6): 1547–1553.

    Article  CAS  Google Scholar 

  27. Xie, G., S. Yang, A. Chen, L. Lan, Z. Lin, Y. Gao, J. Huang, J. Lin, J. Peng, and J. Tao. 2013. Electroacupuncture at Quchi and Zusanli treats cerebral ischemia-reperfusion injury through activation of ERK signaling. Experimental and Therapeutic Medicine 5 (6): 1593–1597.

    Article  CAS  Google Scholar 

  28. Cheng, J., P. Zhu, H. Qin, X. Li, H. Yu, H. Yu, and X. Peng. 2018. Dexmedetomidine attenuates cerebral ischemia/reperfusion injury in neonatal rats by inhibiting TLR4 signaling. The Journal of International Medical Research 46 (7): 2925–2932.

    Article  CAS  Google Scholar 

  29. Dong, J., X. Guo, S. Yang, and L. Li. 2017. The effects of dexmedetomidine preconditioning on aged rat heart of ischaemia reperfusion injury. Research in Veterinary Science 114: 489–492.

    Article  CAS  Google Scholar 

  30. Riquelme, J.A., F. Westermeier, A.R. Hall, J.M. Vicencio, Z. Pedrozo, M. Ibacache, B. Fuenzalida, L. Sobrevia, S.M. Davidson, and D.M. Yellon. 2016. Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacological Research 103: 318–327.

    Article  CAS  Google Scholar 

  31. Li, W.L., S.P. Yu, D. Chen, S.S. Yu, Y.J. Jiang, T. Genetta, and L. Wei. 2013. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 244: 16–30.

    Article  CAS  Google Scholar 

  32. Zheng, Y., J. Hou, J. Liu, M. Yao, L. Li, B. Zhang, H. Zhu, and Z. Wang. 2014. Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. Journal of Pharmacological Sciences 124 (3): 354–364.

    Article  CAS  Google Scholar 

  33. Eskelinen, E.L., F. Reggiori, M. Baba, A.L. Kovács, and P.O. Seglen. 2011. Seeing is beieving: the impact of electron microscopy on autophagy research. Autophagy 7 (9): 935–956.

    Article  CAS  Google Scholar 

  34. Kang, R., H.J. Zeh, M.T. Lotze, and D. Tang. 2011. The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation 18 (4): 571–580.

    Article  CAS  Google Scholar 

  35. Wang, C.P., Y.W. Shi, M. Tang, X.C. Zhang, Y. Gu, X.M. Liang, Z.W. Wang, and F. Ding. 2017. Isoquercetin ameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and anti-apoptotic effects in primary culture of rat hippocampal neurons and hippocampal CA1 region of rats. Molecular Neurobiology 54 (3): 2126–2142.

    Article  CAS  Google Scholar 

  36. Haberzettl, P., and B.G. Hill. 2013. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biology 1: 56–64.

    Article  CAS  Google Scholar 

  37. Zhou, Y.Y., Y. Li, W.Q. Jiang, and L.F. Zhou. 2015. MAPK/JNK signalling: a potential autophagy regulation pathway. Bioscience Reports 35: 3.

    Article  Google Scholar 

  38. Gomez-Sanchez, J.A., L. Carty, M. Iruarrizaga-Lejarreta, M. Palomo-Irigoyen, M. Varela-Rey, M. Griffith, J. Hantke, N. Macias-Camara, M. Azkargorta, and I. Aurrekoetxea. 2015. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. The Journal of Cell Biology 210 (1): 153–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, S., Liu, J. et al. Role of JNK Signaling Pathway in Dexmedetomidine Post-Conditioning-Induced Reduction of the Inflammatory Response and Autophagy Effect of Focal Cerebral Ischemia Reperfusion Injury in Rats. Inflammation 42, 2181–2191 (2019). https://doi.org/10.1007/s10753-019-01082-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01082-2

KEY WORDS

Navigation