Skip to main content
Log in

Insulin Antagonizes LPS-Induced Inflammatory Responses by Activating SR-A1/ERK Axis in Macrophages

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Insulin is a key regulator of metabolism and inflammation in the body. However, the mechanism of the anti-inflammatory effect of insulin is not fully understood. In the present study, we investigated the role of the class A1 scavenger receptor (SR-A1), a prototypic member of the pattern recognition receptor family, in the insulin-mediated suppression of inflammatory responses in macrophages. Our murine in vivo studies show that insulin can attenuate lipopolysaccharide (LPS)-induced endotoxemia in a SR-A1-dependent manner, and this was consistent with our in vitro results which demonstrate that the SR-A1 is necessary for insulin to antagonize the LPS-induced inflammatory responses in macrophages. The effect of SR-A1 on the anti-inflammatory action of insulin might be associated with the activation of the extracellular signal-regulated kinases (ERK) signaling pathway in macrophages. Insulin could inhibit macrophage polarization to a pro-inflammatory phenotype via the SR-A1/ERK cascade. Collectively, our results suggest that SR-A1 may be a pivotal element for the anti-inflammation effect of insulin in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taniguchi, C.M., B. Emanuelli, and C.R. Kahn. 2006. Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews Molecular Cell Biology 7: 85–96. https://doi.org/10.1038/nrm1837.

    Article  CAS  PubMed  Google Scholar 

  2. Tokarz, V.L., P.E. MacDonald, and A. Klip. 2018. The cell biology of systemic insulin function. The Journal of Cell Biology 217: 2273–2289. https://doi.org/10.1083/jcb.201802095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wasserman, D.H., T.J. Wang, and N.J. Brown. 2018. The vasculature in prediabetes. Circulation research. 122: 1135–1150. https://doi.org/10.1161/CIRCRESAHA.118.311912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuschieri, J., E. Bulger, R. Grinsell, I. Garcia, and R.V. Maier. 2008. Insulin regulates macrophage activation through Activin A1. Shock 29: 285–290. https://doi.org/10.1097/SHK.0b013e318123e4d0.

    Article  CAS  PubMed  Google Scholar 

  5. Aljada, A., H. Ghanim, R. Saadeh, and P. Dandona. 2001. Insulin inhibits NFkappaB and MCP-1 expression in human aortic endothelial cells. The Journal of Clinical Endocrinology and Metabolism. 86: 450–453. https://doi.org/10.1210/jcem.86.1.7278.

    Article  CAS  PubMed  Google Scholar 

  6. Yu, X., H. Yi, C. Guo, D. Zuo, Y. Wang, H.L. Kim, J.R. Subjeck, and X.Y. Wang. 2011. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. The Journal of Biological Chemistry. 286: 18795–18806. https://doi.org/10.1074/jbc.M111.224345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobayashi, H., N. Sakashita, T. Okuma, Y. Terasaki, K. Tsujita, H. Suzuki, T. Kodama, H. Nomori, M. Kawasuji, and M. Takeya. 2007. Class A scavenger receptor (CD204) attenuates hyperoxia-induced lung injury by reducing oxidative stress. The Journal of Pathology. 212: 38–46. https://doi.org/10.1002/path.2150.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, X., G. Zong, L. Zhu, Y. Jiang, K. Ma, H. Zhang, Y. Zhang, H. Bai, Q. Yang, J. Ben, X. Li, Y. Xu, and Q. Chen. 2014. Deletion of class A scavenger receptor deteriorates obesity-induced insulin resistance in adipose tissue. Diabetes 63: 562–577. https://doi.org/10.2337/db13-0815.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, X.D., Y. Zhuang, J.J. Ben, L.L. Qian, H.P. Huang, H. Bai, J.H. Sha, Z.G. He, and Q. Chen. 2011. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. The Journal of Biological Chemistry. 286: 8231–8239. https://doi.org/10.1074/jbc.M110.145888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang, C.P., S. Han, T. Senokuchi, and A.R. Tall. 2007. The macrophage at the crossroads of insulin resistance and atherosclerosis. Circulation Research. 100: 1546–1555. https://doi.org/10.1161/CIRCRESAHA.107.152165.

    Article  CAS  PubMed  Google Scholar 

  11. Lu, H., D. Huang, K. Yao, C. Li, S. Chang, Y. Dai, A. Sun, Y. Zou, J. Qian, and J. Ge. 2015. Insulin enhances dendritic cell maturation and scavenger receptor-mediated uptake of oxidised low-density lipoprotein. Journal of Diabetes and its Complications 29: 465–471. https://doi.org/10.1016/j.jdiacomp.2015.03.005.

    Article  PubMed  Google Scholar 

  12. Oh, Y.S., K.A. Cho, S.J. Ryu, L.Y. Khil, H.S. Jun, J.W. Yoon, and S.C. Park. 2006. Regulation of insulin response in skeletal muscle cell by caveolin status. Journal of Cellular Biochemistry 99: 747–758. https://doi.org/10.1002/jcb.20943.

    Article  CAS  PubMed  Google Scholar 

  13. King, G.L., and S.M. Johnson. 1985. Receptor-mediated transport of insulin across endothelial cells. Science 227: 1583–1586.

    Article  CAS  PubMed  Google Scholar 

  14. Uhles, S., T. Moede, B. Leibiger, P.O. Berggren, and I.B. Leibiger. 2003. Isoform-specific insulin receptor signaling involves different plasma membrane domains. The Journal of Cell Biology. 163: 1327–1337. https://doi.org/10.1083/jcb.200306093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fagerholm, S., U. Ortegren, M. Karlsson, I. Ruishalme, and P. Stralfors. 2009. Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS One 4: e5985. https://doi.org/10.1371/journal.pone.0005985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamamoto, M., Y. Toya, C. Schwencke, M.P. Lisanti, M.G. Myers Jr., and Y. Ishikawa. 1998. Caveolin is an activator of insulin receptor signaling. The Journal of Biological Chemistry 273: 26962–26968.

    Article  CAS  PubMed  Google Scholar 

  17. Oshikawa, J., K. Otsu, Y. Toya, T. Tsunematsu, R. Hankins, J. Kawabe, S. Minamisawa, S. Umemura, Y. Hagiwara, and Y. Ishikawa. 2004. Insulin resistance in skeletal muscles of caveolin-3-null mice. Proceedings of the National Academy of Sciences of the United States of America 101: 12670–12675. https://doi.org/10.1073/pnas.0402053101.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, L., D. Brown, M. McKee, N.K. Lebrasseur, D. Yang, K.H. Albrecht, et al. 2008. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell metabolism. 8: 310–317. https://doi.org/10.1016/j.cmet.2008.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vainio, S., S. Heino, J.E. Mansson, P. Fredman, E. Kuismanen, O. Vaarala, and E. Ikonen. 2002. Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Reports 3: 95–100. https://doi.org/10.1093/embo-reports/kvf010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frittitta, L., G. Grasso, M.E. Munguira, R. Vigneri, and V. Trischitta. 1993. Insulin receptor tyrosine kinase activity is reduced in monocytes from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 36: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  21. Comi, R.J., G. Grunberger, and P. Gorden. 1987. Relationship of insulin binding and insulin-stimulated tyrosine kinase activity is altered in type II diabetes. The Journal of Clinical Investigation. 79: 453–462. https://doi.org/10.1172/JCI112833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, C.P., S. Han, H. Okamoto, R. Carnemolla, I. Tabas, D. Accili, and A.R. Tall. 2004. Increased CD36 protein as a response to defective insulin signaling in macrophages. The Journal of Clinical Investigation. 113: 764–773. https://doi.org/10.1172/JCI19528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, S., C.P. Liang, T. DeVries-Seimon, M. Ranalletta, C.L. Welch, K. Collins-Fletcher, D. Accili, I. Tabas, and A.R. Tall. 2006. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metabolism. 3: 257–266. https://doi.org/10.1016/j.cmet.2006.02.008.

    Article  CAS  PubMed  Google Scholar 

  24. Avruch, J. 2007. MAP kinase pathways: The first twenty years. Biochimica et Biophysica Acta 1773: 1150–1160. https://doi.org/10.1016/j.bbamcr.2006.11.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (81830011, 81670418, and 91739304 to Qi Chen, 81870371 to Jingjing Ben, 81770417 to Xudong Zhu, 81670263 to Xiaoyu Li) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA310003 to Jingjing Ben, 15KJA310001 to Xiaoyu Li).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Zhu or Qi Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Nanjing Medical University (Permit Number: NJMU/IACUC-1601121).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Fan, L., Zhu, Y. et al. Insulin Antagonizes LPS-Induced Inflammatory Responses by Activating SR-A1/ERK Axis in Macrophages. Inflammation 42, 754–762 (2019). https://doi.org/10.1007/s10753-018-0933-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0933-1

Key Words

Navigation