Skip to main content
Log in

Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules—–myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu. 2010. The many paths to asthma: Phenotype shaped by innate and adaptive immunity. Nature Immunology 11: 577–584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hamid, Q., and M. Tulic. 2009. Immunobiology of asthma. Annual Review of Physiology 71: 489–507.

    Article  PubMed  CAS  Google Scholar 

  3. Anandan, C., U. Nurmatov, O.C. van Schayck, and A. Sheikh. 2010. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 65: 152–167.

    Article  PubMed  CAS  Google Scholar 

  4. Ie, K., A. Yoshizawa, S. Hirano, S. Izumi, M. Hojo, H. Sugiyama, N. Kobayasi, et al. 2010. A survey of perioperative asthmatic attack among patients with bronchial asthma underwent general anesthesia. Arerugī 59: 831–838.

    Google Scholar 

  5. Woods, B.D., and R.N. Sladen. 2009. Perioperative considerations for the patient with asthma and bronchospasm. British Journal of Anaesthesia 103: i57–i65.

    Article  PubMed  Google Scholar 

  6. Chan, A.L., M.M. Juarez, N. Gidwani, and T.E. Albertson. 2015. Management of critical asthma syndrome during pregnancy. Clinical Reviews in Allergy and Immunology 48: 45–53.

    Article  PubMed  Google Scholar 

  7. Grim, K.J., A.J. Abcejo, A. Barnes, V. Sathish, D.F. Smelter, G.C. Ford, M.A. Thompson, Y.S. Prakash, and C.M. Pabelick. 2012. Caveolae and propofol effects on airway smooth muscle. British Journal of Anaesthesia 109: 444–453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meng, J., X. Xin, Z. Liu, H. Li, B. Huang, Y. Huang, and J. Zhao. 2016. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor. The Journal of Surgical Research 206: 442–450.

    Article  PubMed  CAS  Google Scholar 

  9. Andersson, C., E. Tufvesson, Z. Diamant, and L. Bjermer. 2016. Revisiting the role of the mast cell in asthma. Current Opinion in Pulmonary Medicine 22: 10–17.

    Article  PubMed  CAS  Google Scholar 

  10. Zuo, L., K. Lucas, C.A. Fortuna, C.C. Chuang, and T.M. Best. 2015. Molecular regulation of toll-like receptors in asthma and COPD. Frontiers in Physiology 6: 312.

    PubMed  PubMed Central  Google Scholar 

  11. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology 11: 373–384.

    Article  PubMed  CAS  Google Scholar 

  12. Yamashita, M., and T. Nakayama. 2008. Progress in allergy signal research on mast cells: Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Journal of Pharmacological Sciences 106: 332–335.

    Article  PubMed  CAS  Google Scholar 

  13. Nigo, Y.I., M. Yamashita, K. Hirahara, R. Shinnakasu, M. Inami, M. Kimura, A. Hasegawa, Y. Kohno, and T. Nakayama. 2006. Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Proceedings of the National Academy of Sciences of the United States of America 103: 2286–2291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lee, A.J., M. Ro, K.J. Cho, and J.H. Kim. 2017. Lipopolysaccharide/TLR4 stimulates IL-13 production through a MyD88-BLT2-linked cascade in mast cells, potentially contributing to the allergic response. Vol. 199, 409–417.

    Google Scholar 

  15. Schnare, M., G.M. Barton, A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2001. Toll-like receptors control activation of adaptive immune responses. Nature Immunology 2: 947–950.

    Article  PubMed  CAS  Google Scholar 

  16. Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12: 93–124.

    Article  CAS  Google Scholar 

  17. Nadeem, A., N. Siddiqui, N.O. Alharbi, and M.M. Alharbi. 2014. Airway and systemic oxidant-antioxidant dysregulation in asthma: A possible scenario of oxidants spill over from lung into blood. Pulmonary Pharmacology & Therapeutics 29: 31–40.

    Article  CAS  Google Scholar 

  18. Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi, and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology & Therapeutics 121: 1–13.

    Article  CAS  Google Scholar 

  19. Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5: 1266–1283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhou, C.H., Y.Z. Zhu, P.P. Zhao, C.M. Xu, M.X. Zhang, H. Huang, J. Li, L. Liu, and Y.Q. Wu. 2015. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuclear factor-kappaB, extracellular signal-regulated protein kinases1/2, and p38 mitogen-activated protein kinase pathways. Anesthesia and Analgesia 120: 1361–1368.

    Article  PubMed  CAS  Google Scholar 

  21. Ulbrich, F., L. Eisert, H. Buerkle, U. Goebel, and N. Schallner. 2016. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. European Journal of Anaesthesiology 33: 670–680.

    Article  PubMed  CAS  Google Scholar 

  22. Price, M.M., C.A. Oskeritzian, Y.T. Falanga, K.B. Harikumar, J.C. Allegood, S.E. Alvarez, D. Conrad, J.J. Ryan, S. Milstien, and S. Spiegel. 2013. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol 131 (e501): 501–511.

    Article  PubMed  CAS  Google Scholar 

  23. Nakae, S., C. Lunderius, L.H. Ho, B. Schafer, M. Tsai, and S.J. Galli. 2007. TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. The Journal of Allergy and Clinical Immunology 119: 680–686.

    Article  PubMed  CAS  Google Scholar 

  24. Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192: 455–462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Padrid, P., S. Snook, T. Finucane, P. Shiue, P. Cozzi, J. Solway, and A.R. Leff. 1995. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. American Journal of Respiratory and Critical Care Medicine 151: 184–193.

    Article  PubMed  CAS  Google Scholar 

  27. Burburan, S.M., D.G. Xisto, and P.R. Rocco. 2007. Anaesthetic management in asthma. Minerva Anestesiologica 73: 357–365.

    PubMed  CAS  Google Scholar 

  28. Kuperman, D.A., X. Huang, L.L. Koth, G.H. Chang, G.M. Dolganov, Z. Zhu, J.A. Elias, D. Sheppard, and D.J. Erle. 2002. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Medicine 8: 885–889.

    Article  PubMed  CAS  Google Scholar 

  29. Luttmann, W., T. Matthiesen, H. Matthys, and J. C. Virchow, Jr. 1999. Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro. American Journal of Respiratory Cell and Molecular Biology 20:474–480.

  30. Shakoory, B., S.M. Fitzgerald, S.A. Lee, D.S. Chi, and G. Krishnaswamy. 2004. The role of human mast cell-derived cytokines in eosinophil biology. Journal of Interferon & Cytokine Research 24: 271–281.

    Article  CAS  Google Scholar 

  31. O’Neill, L.A. 2008. Primer: Toll-like receptor signaling pathways—what do rheumatologists need to know? Nature Clinical Practice. Rheumatology 4: 319–327.

    Article  PubMed  CAS  Google Scholar 

  32. Ye, H.H., K.J. Wu, S.J. Fei, X.W. Zhang, H.X. Liu, J.L. Zhang, and Y.M. Zhang. 2013. Propofol participates in gastric mucosal protection through inhibiting the toll-like receptor-4/nuclear factor kappa-B signaling pathway. Clinics and Research in Hepatology and Gastroenterology 37: e3–15.

    Article  PubMed  CAS  Google Scholar 

  33. Dikmen, B., H. Yagmurdur, T. Akgul, M. Astarci, H. Ustun, and C. Germiyanoglu. 2010. Preventive effects of propofol and ketamine on renal injury in unilateral ureteral obstruction. Journal of Anesthesia 24: 73–80.

    Article  PubMed  Google Scholar 

  34. Bandeiras, C., A.P. Serro, K. Luzyanin, A. Fernandes, and B. Saramago. 2013. Anesthetics interacting with lipid rafts. European Journal of Pharmaceutical Sciences 48: 153–165.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, G.J., T.L. Chen, C.C. Chang, and R.M. Chen. 2009. Propofol suppresses tumor necrosis factor-alpha biosynthesis in lipopolysaccharide-stimulated macrophages possibly through downregulation of nuclear factor-kappa B-mediated toll-like receptor 4 gene expression. Chemico-Biological Interactions 180: 465–471.

    Article  PubMed  CAS  Google Scholar 

  36. Gan, X., D. Xing, G. Su, S. Li, C. Luo, M.G. Irwin, Z. Xia, H. Li, and Z. Hei. 2015. Propofol attenuates small intestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation. Oxidative Medicine and Cellular Longevity 2015: 167014.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao, W., S. Zhou, W. Yao, X. Gan, G. Su, D. Yuan, and Z. Hei. 2014. Propofol prevents lung injury after intestinal ischemia–reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sciences 108: 80–87.

    Article  PubMed  CAS  Google Scholar 

  38. Inoue, T., Y. Suzuki, T. Yoshimaru, and C. Ra. 2008. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: Role of NADPH oxidase and mitochondria. Biochimica et Biophysica Acta 1783: 789–802.

    Article  PubMed  CAS  Google Scholar 

  39. Kuehn, H.S., E.J. Swindle, M.S. Kim, M.A. Beaven, D.D. Metcalfe, and A.M. Gilfillan. 2008. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. Journal of Immunology 181: 7706–7712.

    Article  CAS  Google Scholar 

  40. Cho, K.J., J.M. Seo, M.G. Lee, and J.H. Kim. 2010. BLT2 is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. Journal of Immunology 185: 6329–6337.

    Article  CAS  Google Scholar 

  41. Tully, J.E., S.M. Hoffman, K.G. Lahue, J.D. Nolin, V. Anathy, L.K. Lundblad, N. Daphtary, et al. 2013. Epithelial NF-kappaB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. Journal of Immunology 191: 5811–5821.

    Article  CAS  Google Scholar 

  42. Mitchell, S., J. Vargas, and A. Hoffmann. 2016. Signaling via the NFkappaB system. Wiley Interdisciplinary Reviews. Systems Biology and Medicine 8: 227–241.

    Article  PubMed  CAS  Google Scholar 

  43. Shin, I.W., I.S. Jang, S.H. Lee, J.S. Baik, K.E. Park, J.T. Sohn, H.K. Lee, and Y.K. Chung. 2010. Propofol has delayed myocardial protective effects after a regional ischemia/reperfusion injury in an in vivo rat heart model. Korean J Anesthesiol 58: 378–382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yuzbasioglu, M.F., A. Aykas, E.B. Kurutas, and T. Sahinkanat. 2010. Protective effects of propofol against ischemia/reperfusion injury in rat kidneys. Renal Failure 32: 578–583.

    Article  PubMed  CAS  Google Scholar 

  45. Shibuya, K., T. Ishiyama, M. Ichikawa, H. Sato, K. Okuyama, D.I. Sessler, and T. Matsukawa. 2009. The direct effects of propofol on pial microvessels in rabbits. Journal of Neurosurgical Anesthesiology 21: 40–46.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81250026), Graduate Student Innovation Foundation of Peking Union Medical College (201510020202), and Initial Scientific Research foundation for talent introduction of China–Japan Friendship Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Meng, JX., Liu, Z. et al. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway. Inflammation 41, 914–923 (2018). https://doi.org/10.1007/s10753-018-0746-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0746-2

Key Words

Navigation