Skip to main content

Advertisement

Log in

Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The excessive activation of microglia plays a key role in the pathogenesis of neurodegenerative diseases. The neuroprotective properties of rosmarinic acid have been reported in a variety of disease models both in vitro and in vivo; however, the mechanism underlying its anti-neuroinflammatory activity has not been clearly elucidated. In the present study, we evaluated the anti-inflammatory effects of rosmarinic acid in conditions of neuroinflammatory injury in vitro and in vivo. The results indicated that rosmarinic acid reduced the expression of CD11b, a marker of microglia and macrophages, in the brain and dramatically inhibited the levels of inflammatory cytokines and mediators, such as TNFα, IL-6, IL-1β, COX-2, and iNOS, in a dose-dependent manner both in vitro and in vivo. Consistent with these results, the expression levels of TLR4 and CD14 and the phosphorylation of JNK were also reduced. Further study showed that rosmarinic acid suppresses the activation of the NF-κB pathway and NLRP3 inflammasome, which may contribute to its anti-inflammatory effects. These results suggest that rosmarinic acid significantly reduced TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation, which is involved in anti-neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin, R., G. Yang, and G. Li. 2010. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. Journal of Leukocyte Biology 87: 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown, G.C., and J.J. Neher. 2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology 41: 242–247.

    Article  CAS  PubMed  Google Scholar 

  3. Benakis, C., L. Garcia-Bonilla, C. Iadecola, and J. Anrather. 2014. The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience 8: 461.

    PubMed  Google Scholar 

  4. Lee, Y., S.R. Lee, S.S. Choi, H.G. Yeo, K.T. Chang, and H.J. Lee. 2014. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Research International 2014: 297241.

    PubMed  PubMed Central  Google Scholar 

  5. Collins, T., and M.I. Cybulsky. 2001. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? Journal of Clinical Investigation 107: 255–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beninson, L.A., and M. Fleshner. 2015. Exosomes in fetal bovine serum dampen primary macrophage IL-1beta response to lipopolysaccharide (LPS) challenge. Immunology Letters 163: 187–192.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, S.J., G.F. Shao, J.L. Chen, and J. Gong. 2017. The NLRP3 inflammasome: An important driver of neuroinflammation in hemorrhagic stroke. Cellular and Molecular Neurobiology. https://doi.org/10.1007/s10571-017-0526-9.

  8. Wang, Q., P. Lin, P. Li, L. Fen, Q. Ren, X. Xie, and J. Xu. 2017. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sciences. 186: 50–58.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, M., Y. Zhang, J.Y. Xiong, Y. Wang, and S. Lv. 2016. Etomidate mitigates lipopolysaccharide-induced CD14 and TREM-1 expression, NF-kappaB activation, and pro-inflammatory cytokine production in rat macrophages. Inflammation 39: 327–335.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H., Y. Zhan, L. Xu, G.Z. Feuerstein, and X. Wang. 2001. Use of suppression subtractive hybridization for differential gene expression in stroke: Discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32: 1020–1027.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  12. Beschorner, R., H.J. Schluesener, F. Gozalan, R. Meyermann, and J.M. Schwab. 2002. Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. Journal of Neuroimmunology 126: 107–115.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J., Q. Chen, Z. Jian, X. Xiong, L. Shao, T. Jin, X. Zhu, and L. Wang. 2016. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-kappaB signaling pathway. BioMed Research International 2016: 2816056.

    PubMed  PubMed Central  Google Scholar 

  14. Li, X., L. Su, X. Zhang, C. Zhang, L. Wang, Y. Li, Y. Zhang, T. He, X. Zhu, and L. Cui. 2017. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurological Research 39: 367–373.

    Article  CAS  PubMed  Google Scholar 

  15. Ghaffari, H., M. Venkataramana, G.B. Jalali, N.S. Chandra, A. Nataraju, N.P. Geetha, and H.S. Prakash. 2014. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 113: 7–13.

    Article  CAS  PubMed  Google Scholar 

  16. Du, T., L. Li, N. Song, J. Xie, and H. Jiang. 2010. Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. International Journal of Toxicology 29: 625–633.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, and J.S. Bae. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.

    Article  CAS  PubMed  Google Scholar 

  18. Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, and B. Sepodes. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116: 398–413.

    Article  CAS  Google Scholar 

  19. Luan, H., Z. Kan, Y. Xu, C. Lv, and W. Jiang. 2013. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. Journal of Neuroinflammation 10: 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, F., Q. Zou, X. Ding, D. Shi, X. Zhu, W. Hu, L. Liu, and H. Zhou. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. Journal of Neuroinflammation 13: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, D., J. Shi, S. Lv, W. Xu, J. Li, W. Ge, C. Xiao, D. Geng, and Y. Liu. 2015. Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-kappaB activation in microglial cells. Inflammation 38: 1925–1932.

    Article  CAS  PubMed  Google Scholar 

  22. Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, C.M., D.S. Lee, W.K. Jung, J.S. Yoo, M.J. Yim, Y.H. Choi, S. Park, S.K. Seo, J.S. Choi, Y.M. Lee, W.S. Park, and I.W. Choi. 2016. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. International Journal of Molecular Medicine 38: 912–918.

    Article  CAS  PubMed  Google Scholar 

  24. Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metabolism 13: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lattke, M., S.N. Reichel, and B. Baumann. 2017. NF-kappaB-mediated astrocyte dysfunction initiates neurodegeneration. Oncotarget 8: 50329–50330.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moskowitz, M.A., E.H. Lo, and C. Iadecola. 2010. The science of stroke: Mechanisms in search of treatments. Neuron 67: 181–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iuvone, T., D. De Filippis, G. Esposito, A. D’Amico, and A.A. Izzo. 2006. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. Journal of Pharmacology and Experimental Therapeutics 317: 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  28. Hasanein, P., and A.K. Mahtaj. 2015. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neuroscience Letters 585: 23–27.

    Article  CAS  PubMed  Google Scholar 

  29. Hasanein, P., R. Seifi, M.R. Hajinezhad, and A. Emamjomeh. 2017. Rosmarinic acid protects against chronic ethanol-induced learning and memory deficits in rats. Nutritional Neuroscience 20: 547–554.

    Article  CAS  PubMed  Google Scholar 

  30. Zdarilova, A., A. Svobodova, V. Simanek, and J. Ulrichova. 2009. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicology In Vitro 23: 386–392.

    Article  CAS  PubMed  Google Scholar 

  31. Chu, X., X. Ci, J. He, L. Jiang, M. Wei, Q. Cao, M. Guan, X. Xie, X. Deng, and J. He. 2012. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17: 3586–3598.

    Article  CAS  PubMed  Google Scholar 

  32. Liang, Z., Y. Xu, X. Wen, H. Nie, T. Hu, X. Yang, X. Chu, J. Yang, X. Deng, and J. He. 2016. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 21: 769.

    Article  Google Scholar 

  33. Lakhan, S.E., A. Kirchgessner, and M. Hofer. 2009. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine 7: 97.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eliasson, M.J., Z. Huang, R.J. Ferrante, M. Sasamata, M.E. Molliver, S.H. Snyder, and M.A. Moskowitz. 1999. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience 19: 5910–5918.

    CAS  PubMed  Google Scholar 

  35. Del, Z.G., I. Ginis, J.M. Hallenbeck, C. Iadecola, X. Wang, and G.Z. Feuerstein. 2000. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathology 10: 95–112.

    Google Scholar 

  36. Walton, K.M., R. DiRocco, B.A. Bartlett, E. Koury, V.R. Marcy, B. Jarvis, E.M. Schaefer, and R.V. Bhat. 1998. Activation of p38MAPK in microglia after ischemia. Journal of Neurochemistry 70: 1764–1767.

    Article  CAS  PubMed  Google Scholar 

  37. Lujia, Y., L. Xin, W. Shiquan, C. Yu, Z. Shuzhuo, and Z. Hong. 2014. Ceftriaxone pretreatment protects rats against cerebral ischemic injury by attenuating microglial activation-induced IL-1beta expression. International Journal of Neuroscience 124: 657–665.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported through grants from the Department of Technology and Science of Fujian Provincial Government (Grant No. 2016Y0055) and the Collaborative Innovation Center for the Rehabilitation Technology of Fujian University of TCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicong Wei.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Fig. S1

Rosmarinic acid (RA) does not affect cell viability of BV2 cells. The cytotoxic effect of RA on cultured BV2 cell exposure to LPS. BV2 cells were treated with RA at concentrations of 50, 100, and 200 μM for 24 h in the presence and absence of LPS (100 ng/mL). The cell viability was expressed as the percentage of surviving cells compared with control cells using CKK8 assay. The data are presented as the means ± SEM of three independent experiments (n = 3). (JPEG 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, J., Hu, Y. et al. Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation. Inflammation 41, 732–740 (2018). https://doi.org/10.1007/s10753-017-0728-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0728-9

Key Words

Navigation