Skip to main content
Log in

RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Schouten, L.R., M.J. Schultz, A.H. van Kaam, N.P. Juffermans, A.P. Bos, and R.M. Wosten-van Asperen. 2015. Association between maturation and aging and pulmonary responses in animal models of lung injury: a systematic review. Anesthesiology 123: 389–408.

    Article  PubMed  Google Scholar 

  2. Villar, J., D. Sulemanji, and R.M. Kacmarek. 2014. The acute respiratory distress syndrome: incidence and mortality, has it changed? Current Opinion in Critical Care 20: 3–9.

    Article  PubMed  Google Scholar 

  3. Takao, Y., K. Mikawa, K. Nishina, N. Maekawa, and H. Obara. 1996. Lidocaine attenuates hyperoxic lung injury in rabbits. Acta Anaesthesiologica Scandinavica 40: 318–25.

    Article  CAS  PubMed  Google Scholar 

  4. Feng, G., S. Liu, G.L. Wang, and G.J. Liu. 2008. Lidocaine attenuates lipopolysaccharide-induced acute lung injury through inhibiting NF-kappaB activation. Pharmacology 81: 32–40.

    Article  CAS  PubMed  Google Scholar 

  5. Howlett, T., and J. Lerman. 2006. Effects of lidocaine and steroids on breast milk-induced lung injury in rabbits. Paediatric Anaesthesia 16: 523–9.

    Article  PubMed  Google Scholar 

  6. Lee, P.Y., P.S. Tsai, Y.H. Huang, and C.J. Huang. 2008. Inhibition of toll-like receptor-4, nuclear factor-kappaB and mitogen-activated protein kinase by lignocaine may involve voltage-sensitive sodium channels. Clinical and Experimental Pharmacology and Physiology 35: 1052–8.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen Jr., M.M. 2013. Perspectives on RAGE signaling and its role in cardiovascular disease. American Journal of Medical Genetics Part A 161A: 2750–5.

    Article  PubMed  Google Scholar 

  8. Uspenskaya, Y.A., Y.K. Komleva, E.A. Pozhilenkova, V.V. Salmin, O.L. Lopatina, A.A. Fursov, P.V. Lavrentiev, O.A. Belova and A.B. Salmina. 2015. [Ligands of RAGE-Proteins: Role in Intercellular Communication and Pathogenesis of Inflammation]. Vestnik Rossiĭskoĭ Akademii Meditsinskikh Nauk 6: 694–703.

  9. Lutterloh, E.C., and S.M. Opal. 2007. Antibodies against RAGE in sepsis and inflammation: implications for therapy. Expert Opinion on Pharmacotherapy 8: 1193–6.

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds, P.R., R.E. Schmitt, S.D. Kasteler, A. Sturrock, K. Sanders, A. Bierhaus, P.P. Nawroth, R. Paine 3rd, and J.R. Hoidal. 2010. Receptors for advanced glycation end-products targeting protect against hyperoxia-induced lung injury in mice. American Journal of Respiratory Cell and Molecular Biology 42: 545–51.

    Article  CAS  PubMed  Google Scholar 

  11. Wood, T.T., D.R. Winden, D.R. Marlor, A.J. Wright, C.M. Jones, M. Chavarria, G.D. Rogers, and P.R. Reynolds. 2014. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology 307: L758–64.

    Article  CAS  PubMed  Google Scholar 

  12. Ramsgaard, L., J.M. Englert, M.L. Manni, P.S. Milutinovic, J. Gefter, J. Tobolewski, L. Crum, G.M. Coudriet, J. Piganelli, R. Zamora, Y. Vodovotz, J.J. Enghild, and T.D. Oury. 2011. Lack of the receptor for advanced glycation end-products attenuates E. coli pneumonia in mice. PloS One 6: e20132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, H.L., W.H. Zhang, W.F. Lei, C.Q. Zhou, and T. Ye. 2011. The inhibitory effect of lidocaine on the release of high mobility group box 1 in lipopolysaccharide-stimulated macrophages. Anesthesia and Analgesia 112: 839–44.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H.L., Y.Q. Xing, Y.X. Xu, F. Rong, W.F. Lei, and W.H. Zhang. 2013. The protective effect of lidocaine on septic rats via the inhibition of high mobility group box 1 expression and NF-kappaB activation. Mediators of Inflammation 2013: 570370.

    PubMed  PubMed Central  Google Scholar 

  15. van Zoelen, M.A., H. Yang, S. Florquin, J.C. Meijers, S. Akira, B. Arnold, P.P. Nawroth, A. Bierhaus, K.J. Tracey, and T. van der Poll. 2009. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock 31: 280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deng, Y., Z. Yang, Y. Gao, H. Xu, B. Zheng, M. Jiang, J. Xu, Z. He, and X. Wang. 2013. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. PloS One 8: e64375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, M., D. Shao, J. Liu, J. Zhu, Z. Zhang, and J. Xu. 2007. Effects of ketamine on levels of cytokines, NF-kappaB and TLRs in rat intestine during CLP-induced sepsis. International Immunopharmacology 7: 1076–82.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J., H. Zhang, Z. Qi, and X. Zheng. 2014. Lidocaine protects against renal and hepatic dysfunction in septic rats via downregulation of Tolllike receptor 4. Molecular Medicine Reports 9: 118–24.

    CAS  PubMed  Google Scholar 

  19. Li, K., J. Yang, and X. Han. 2016. Ketamine attenuates sepsis-induced acute lung injury via regulation of HMGB1-RAGE pathways. International Immunopharmacology 34: 114–28.

    Article  CAS  PubMed  Google Scholar 

  20. Lutterloh, E.C., S.M. Opal, D.D. Pittman, J.C. Keith Jr., X.Y. Tan, B.M. Clancy, H. Palmer, K. Milarski, Y. Sun, J.E. Palardy, N.A. Parejo, and N. Kessimian. 2007. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Critical Care 11: R122.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, W., O.K. Kwon, M.S. Han, Y.M. Lee, S.W. Kim, K.M. Kim, T. Lee, S. Lee, and J.S. Bae. 2015. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thrombosis and Haemostasis 114: 350–63.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, T., Z. Li, X. Li, G. Yu, N. Wang, and X. Yang. 2014. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. The Journal of Surgical Research 192: 150–62.

    Article  CAS  PubMed  Google Scholar 

  23. Tobon-Velasco, J.C., E. Cuevas, and M.A. Torres-Ramos. 2014. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets 13: 1615–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author’s Contributions

ZZ, JZ, CL, XL, ML, DS, and XJ conceptualize, design, analyze, and interpret the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Jiang.

Ethics declarations

Conflicts of Interest

The authors report no proprietary or commercial interest in any product mentioned, or concept discussed, in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, J., Liao, C. et al. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury. Inflammation 40, 601–611 (2017). https://doi.org/10.1007/s10753-016-0507-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0507-z

KEY WORDS

Navigation