Skip to main content
Log in

Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Objective Immune dysfunction, including prominent apoptosis of immune cells and decreased functioning of the remaining immune cells, plays a central role in the pathogenesis of sepsis. Sterile α and HEAT/armadillo motif-containing protein (SARM) is implicated in the regulation of immune cell apoptosis. This study aimed to elucidate SARM contributes to sepsis-induced immune cell death and immunosuppression. Methods A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). SARM gene and protein expression, caspase 3 cleavage and intracellular ATP production were measured in the mouse spleens. Results CLP-induced polymicrobial sepsis specifically attenuated both the gene and protein expression of SARM in the spleens. Moreover, the attenuation of SARM expression synchronized with splenocyte apoptosis, as evidenced by increased caspase 3 cleavage and ATP depletion. Conclusions These findings suggest that SARM is a potential regulator of sepsis-induced splenocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincent, J.L., S.M. Opal, J.C. Marshall, and K.J. Tracey. 2013. Sepsis definitions: time for change. Lancet 381: 774–775.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mayr, F.B., S. Yende, and D.C. Angus. 2014. Epidemiology of severe sepsis. Virulence 5: 4–11.

    Article  PubMed  Google Scholar 

  3. Zhou, J., C. Qian, M. Zhao, X. Yu, Y. Kang, X. Ma, et al. 2014. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PloS One 9: e107181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leentjens, J., M. Kox, J.G. van der Hoeven, M.G. Netea, and P. Pickkers. 2013. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? American Journal of Respiratory and Critical Care Medicine 187: 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  5. Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infectious Diseases 13: 260–268.

    Article  CAS  PubMed  Google Scholar 

  6. Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology 13: 862–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Condotta, S.A., J. Cabrera-Perez, V.P. Badovinac, and T.S. Griffith. 2013. T-cell-mediated immunity and the role of TRAIL in sepsis-induced immunosuppression. Critical Reviews in Immunology 33: 23–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mink, M., B. Fogelgren, K. Olszewski, P. Maroy, and K. Csiszar. 2001. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 74: 234–244.

    Article  CAS  PubMed  Google Scholar 

  9. O’Neill, L.A., K.A. Fitzgerald, and A.G. Bowie. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends in Immunology 24: 286–290.

    Article  CAS  PubMed  Google Scholar 

  10. O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology 7: 353–364.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, Y., P. Zhou, L. Qian, J.Z. Chuang, J. Lee, C. Li, et al. 2007. MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. Journal of Experimental Medicine 204: 2063–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee, P., T.A. Woods, R.A. Moore, and K.E. Peterson. 2013. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38: 705–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panneerselvam, P., L.P. Singh, B. Ho, J. Chen, and J.L. Ding. 2012. Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence. Biometrical Journal 442: 263–271.

    CAS  Google Scholar 

  14. Panneerselvam, P., L.P. Singh, V. Selvarajan, W.J. Chng, S.B. Ng, N.S. Tan, et al. 2013. T-cell death following immune activation is mediated by mitochondria-localized SARM. Cell Death and Differentiation 20: 478–489.

    Article  CAS  PubMed  Google Scholar 

  15. Sethman, C.R., and J. Hawiger. 2013. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling. PLoS One 8: e70994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wichterman, K.A., A.E. Baue, and I.H. Chaudry. 1980. Sepsis and septic shock—a review of laboratory models and a proposal. Journal of Surgical Research 29: 189–201.

    Article  CAS  PubMed  Google Scholar 

  17. Zou, L., Y. Feng, Y.J. Chen, R. Si, S. Shen, Q. Zhou, et al. 2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 38: 1335–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou, L., Y. Feng, Y. Li, M. Zhang, C. Chen, J. Cai, et al. 2013. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. Journal of Immunology 191: 5625–5635.

    Article  CAS  Google Scholar 

  19. Zou, L., Y. Feng, M. Zhang, Y. Li, and W. Chao. 2011. Nonhematopoietic toll-like receptor 2 contributes to neutrophil and cardiac function impairment during polymicrobial sepsis. Shock 36: 370–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  21. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Poli-de-Figueiredo, L.F., A.G. Garrido, N. Nakagawa, and P. Sannomiya. 2008. Experimental models of sepsis and their clinical relevance. Shock 30(Suppl 1): 53–59.

    Article  CAS  PubMed  Google Scholar 

  23. Carty, M., R. Goodbody, M. Schroder, J. Stack, P.N. Moynagh, and A.G. Bowie. 2006. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nature Immunology 7: 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  24. Belinda, L.W., W.X. Wei, B.T. Hanh, L.X. Lei, H. Bow, and D.J. Ling. 2008. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Molecular Immunology 45: 1732–1742.

    Article  CAS  PubMed  Google Scholar 

  25. Peng, J., Q. Yuan, B. Lin, P. Panneerselvam, X. Wang, X.L. Luan, et al. 2010. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. European Journal of Immunology 40: 1738–1747.

    Article  CAS  PubMed  Google Scholar 

  26. Hou, Y.J., R. Banerjee, B. Thomas, C. Nathan, A. Garcia-Sastre, A. Ding, et al. 2013. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. Journal of Immunology 191: 875–883.

    Article  CAS  Google Scholar 

  27. Gerdts, J., D.W. Summers, Y. Sasaki, A. DiAntonio, and J. Milbrandt. 2013. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. Journal of Neuroscience 33: 13569–13580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Summers, D.W., A. DiAntonio, and J. Milbrandt. 2014. Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. Journal of Neuroscience 34: 9338–9350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, X.M., and L. Luo. 2012. Neuroscience. dSarm-ing axon degeneration. Science 337: 418–419.

    Article  CAS  PubMed  Google Scholar 

  30. Osterloh, J.M., J. Yang, T.M. Rooney, A.N. Fox, R. Adalbert, E.H. Powell, et al. 2012. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337: 481–484.

    Article  CAS  PubMed  Google Scholar 

  31. Szretter, K.J., M.A. Samuel, S. Gilfillan, A. Fuchs, M. Colonna, and M.S. Diamond. 2009. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. Journal of Virology 83: 9329–9338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murata, H., M. Sakaguchi, K. Kataoka, and N.H. Huh. 2013. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Molecular Biology of the Cell 24: 2772–2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang, S.C., and J.L. Ding. 2014. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection. Cell Death and Differentiation 21: 1388–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Guangzhou Medical University (2011C43), the Third Affiliated Hospital of Guangzhou Medical University (2012Y20), and Department of Education of Guangdong Province (2015KQNCX137).

Author Contributions

Y.G. designed and did experiments, analyzed data, and wrote the manuscript. L.Z. and DZ.C. helped with the experiments. W.C. and DJ.C.contributed reagents and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Gong or Dunjin Chen.

Ethics declarations

All of the animal care and procedures were performed according to the protocols approved by the Animal Experimental Committee of Guangzhou Medical University or the Subcommittee on Research Animal Care of Massachusetts General Hospital and were in accordance with the Guangdong Animal Center guidelines for the ethical treatment of animals or the “Guide for the Care and Use of Laboratory Animals” published by the National Institutes of Health.

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zou, L., Cen, D. et al. Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis. Inflammation 39, 1930–1938 (2016). https://doi.org/10.1007/s10753-016-0428-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0428-x

KEY WORDS

Navigation