Skip to main content
Log in

A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holloway, R.A., and L.E. Donnelly. 2013. Immunopathogenesis of chronic obstructive pulmonary disease. Current Opinion in Pulmonary Medicine 19(2): 95–9102.

    Article  PubMed  Google Scholar 

  2. Stewart, J.I., and G.J. Criner. 2013. The small airways in chronic obstructive pulmonary disease: pathology and effects on disease progression and survival. Current Opinion in Pulmonary Medicine 19(2): 109–115.

    Article  CAS  PubMed  Google Scholar 

  3. Rowe, S.M., S. Miller, and E.J. Sorscher. 2005. Cystic fibrosis. The New England Journal of Medicine 352(19): 1992–2001.

    Article  CAS  PubMed  Google Scholar 

  4. Moss, R.B., S.J. Mistry, M.W. Konstan, J.M. Pilewski, E. Kerem, R. Tal-Singer, et al. 2013. Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. Journal of Cystic Fibrosis 12(3): 241–248.

    Article  CAS  PubMed  Google Scholar 

  5. Bender, J.G., and D.E. Van Epps. 1985. Stimulus interactions in release of superoxide anion (O2-) from human neutrophils. Further evidence for multiple pathways of activation. Inflammation 9(1): 67–79.

    Article  CAS  PubMed  Google Scholar 

  6. Sadik, C.D., and A.D. Luster. 2012. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. Journal of Leukocyte Biology 91(2): 207–215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Weathington, N.M., A.H. van Houwelingen, B.D. Noerager, P.L. Jackson, A.D. Kraneveld, F.S. Galin, et al. 2006. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Medicine 12(3): 317–323.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, P.L., B.D. Noerager, M.J. Jablonsky, M.T. Hardison, B.D. Cox, J.C. Patterson, et al. 2011. A CXCL8 receptor antagonist based on the structure of N-acetyl-proline-glycine-proline. European Journal of Pharmacology 668(3): 435–442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Xu, X., P.L. Jackson, S. Tanner, M.T. Hardison, M. Abdul Roda, J.E. Blalock, et al. 2011. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS One 6(1): e15781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. O’Reilly, P.J., M.T. Hardison, P.L. Jackson, X. Xu, R.J. Snelgrove, A. Gaggar, et al. 2009. Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. Journal of Neuroimmunology 217(1-2): 51–54.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gaggar, A., P.L. Jackson, B.D. Noerager, P.J. O’Reilly, D.B. McQuaid, S.M. Rowe, et al. 2008. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. Journal of Immunology 180(8): 5662–5669.

    Article  CAS  Google Scholar 

  12. Snelgrove, R.J., P.L. Jackson, M.T. Hardison, B.D. Noerager, A. Kinloch, A. Gaggar, et al. 2010. A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330(6000): 90–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sopori, M. 2002. Effects of cigarette smoke on the immune system. Nature Reviews Immunology 2(5): 372–377.

    Article  CAS  PubMed  Google Scholar 

  14. Stevens, J.F., and C.S. Maier. 2008. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research 52(1): 7–25.

    Article  CAS  Google Scholar 

  15. Anderson, M.M., S.L. Hazen, F.F. Hsu, and J.W. Heinecke. 1997. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. The Journal of Clinical Investigation 99(3): 424–432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kehrer, J.P., and S.S. Biswal. 2000. The molecular effects of acrolein. Toxicological Sciences : An Official Journal of the Society of Toxicology 57(1): 6–15.

    Article  CAS  Google Scholar 

  17. Ambrozova, G., M. Pekarova, and A. Lojek. 2011. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Toxicology In Vitro 25(1): 145–152.

    Article  CAS  PubMed  Google Scholar 

  18. Andreoli, R., P. Manini, M. Corradi, A. Mutti, and W.M.A. Niessen. 2003. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 17(7): 637–645.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Deshmukh, H.S., C. Shaver, L.M. Case, M. Dietsch, S.C. Wesselkamper, W.D. Hardie, et al. 2008. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. American Journal of Respiratory Cell and Molecular Biology 38(4): 446–454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Corradi, M., P. Pignatti, P. Manini, R. Andreoli, M. Goldoni, M. Poppa, et al. 2004. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. The European Respiratory Journal 24(6): 1011–1017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Raju, S.V., P.L. Jackson, C.A. Courville, C.M. McNicholas, P.A. Sloane, G. Sabbatini, et al. 2013. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. American Journal of Respiratory and Critical Care Medicine 188(11): 1321–1330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jang, A.S., V.J. Concel, K. Bein, K.A. Brant, S. Liu, H. Pope-Varsalona, et al. 2011. Endothelial dysfunction and claudin 5 regulation during acrolein-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 44(4): 483–490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Myers, C.R., and J.M. Myers. 2009. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells. Toxicology 257(1-2): 95–9104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Borchers, M.T., M.P. Carty, and G.D. Leikauf. 1999. Regulation of human airway mucins by acrolein and inflammatory mediators. The American Journal of Physiology 276(4 Pt 1): 549–555.

    Google Scholar 

  25. Moretto, N., S. Bertolini, C. Iadicicco, G. Marchini, M. Kaur, G. Volpi, et al. 2012. Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(10): 929–938.

    Article  Google Scholar 

  26. Jaganjac, M., M. Poljak-Blazi, R.J. Schaur, K. Zarkovic, S. Borovic, A. Cipak, et al. 2012. Elevated neutrophil elastase and acrolein-protein adducts are associated with W256 regression. Clinical and Experimental Immunology 170(2): 178–185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Vasilyev, N., T. Williams, M.-L. Brennan, S. Unzek, X. Zhou, J.W. Heinecke, et al. 2005. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 112(18): 2812–2820.

    Article  CAS  PubMed  Google Scholar 

  28. Overbeek, S.A., S. Braber, P.J. Koelink, P.A. Henricks, E. Mortaz, A.T. LoTam Loi, et al. 2013. Cigarette smoke-induced collagen destruction: key to chronic neutrophilic airway inflammation? PLoS One 8(1): e55612.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wells, J.M., P.J. O’Reilly, T. Szul, D.I. Sullivan, G. Handley, C. Garrett, et al. 2014. An aberrant leukotriene A4 hydrolase-proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 190(1): 51–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mio, T., D.J. Romberger, A.B.. Thompson, R.A. Robbins, A. Heires, and S.I. Rennard. 1997. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. American Journal of Respiratory and Critical Care Medicine 155(5): 1770–1776.

  31. Kitaguchi, Y., L. Taraseviciene-Stewart, M. Hanaoka, R. Natarajan, D. Kraskauskas, and N.F. Voelkel. 2012. Acrolein induces endoplasmic reticulum stress and causes airspace enlargement. PLoS One 7(5): e38038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. O’Reilly, P., P.L. Jackson, B. Noerager, S. Parker, M. Dransfield, A. Gaggar, et al. 2009. N-alpha-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respiratory Research 10: 38.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hardison, M.T., F.S. Galin, C.E. Calderon, U.V. Djekic, S.B. Parker, K.M. Wille, et al. 2009. The presence of a matrix-derived neutrophil chemoattractant in bronchiolitis obliterans syndrome after lung transplantation. Journal of Immunology 182(7): 4423–4431.

    Article  CAS  Google Scholar 

  34. O’Donnell, R., D. Breen, S. Wilson, and R. Djukanovic. 2006. Inflammatory cells in the airways in COPD. Thorax 61(5): 448–454.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Finkelstein, E.I., M. Nardini, and A. van der Vliet. 2001. Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease? American Journal of Physiology. Lung Cellular and Molecular Physiology 281(3): 732–739.

    Google Scholar 

  36. Finkelstein, E.I., J. Ruben, C.W. Koot, M. Hristova, and A. van der Vliet. 2005. Regulation of constitutive neutrophil apoptosis by the alpha,beta-unsaturated aldehydes acrolein and 4-hydroxynonenal. American Journal of Physiology. Lung Cellular and Molecular Physiology 289(6): 1019–1028.

    Article  Google Scholar 

  37. Facchinetti, F., F. Amadei, P. Geppetti, F. Tarantini, C. Di Serio, A. Dragotto, et al. 2007. Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. American Journal of Respiratory Cell and Molecular Biology 37(5): 617–623.

    Article  CAS  PubMed  Google Scholar 

  38. O’Toole, T.E., Y.T. Zheng, J. Hellmann, D.J. Conklin, O. Barski, and A. Bhatnagar. 2009. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology 236(2): 194–201.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hochman, D. J., Collaco, C. R., and E. G Brooks. Acrolein induction of oxidative stress and degranulation in mast cells. Environmental Toxicology. 2012.

  40. Berry, K.A., P.M. Henson, and R.C. Murphy. 2008. Effects of acrolein on leukotriene biosynthesis in human neutrophils. Chemical Research in Toxicology 21(12): 2424–2432.

    Article  PubMed  Google Scholar 

  41. Hardison, M.T., M.D. Brown, R.J. Snelgrove, J.E. Blalock, and P. Jackson. 2012. Cigarette smoke enhances chemotaxis via acetylation of proline-glycine-proline. Frontiers in Bioscience 4: 2402–2409.

    Article  Google Scholar 

Download references

Acknowledgments

JEB is funded through NIH (HL07783, HL090999, and HL087824). PLJ is supported by Cystic Fibrosis Foundation R464-CR11 “Research Development Program-Component II” and NIH/NIDDK P30 DKO72482. The authors wish to thank Dr. Mike Wells for thoughtful input on many drafts of the manuscript.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett D. Noerager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noerager, B.D., Xu, X., Davis, V.A. et al. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation. Inflammation 38, 2279–2287 (2015). https://doi.org/10.1007/s10753-015-0213-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0213-2

KEY WORDS

Navigation