Skip to main content

Advertisement

Log in

Piperine Suppresses the Expression of CXCL8 in Lipopolysaccharide-Activated SW480 and HT-29 Cells via Downregulating the Mitogen-Activated Protein Kinase Pathways

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The anti-inflammatory effect of piperine has been largely investigated in macrophages, but its activity on epithelial cells in inflammatory settings is unclear. The present study aimed to investigate the effect of piperine on the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated human epithelial-like SW480 and HT-29 cells. Our data showed that although piperine inhibited the proliferation of SW480 and HT-29 cells in a dose-dependent manner, it had low cytotoxicity on these cell lines with 50 % inhibiting concentration (IC50) values greater than 100 μM. As epithelial-like cells, SW480 and HT-29 cells secreted high levels of the chemokine CXCL8 upon LPS stimulation. Importantly, piperine dose-dependently suppressed LPS-induced secretion of CXCL8 and the expression of CXCL8 messenger RNA (mRNA). Although piperine failed to affect the critical inflammatory nuclear factor-κB pathway, it attenuated the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling. Consistent with previous reports, p38 signaling seemed to play a more pronounced role on the CXCL8 expression than JNK signaling since inhibition of p38, instead of JNK, greatly suppressed LPS-induced CXCL8 expression. Collectively, our results indicated that piperine could attenuate the inflammatory response in epithelial cells via downregulating the MAPK signaling and thus the expression of CXCL8, suggesting its potential application in anti-inflammation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, E.B., K.H. Shin, and W.S. Woo. 1984. Pharmacological study on piperine. Archives of Pharmacal Research 7: 127–32.

    Article  CAS  Google Scholar 

  2. Mehmood, M.H., and A.H. Gilani. 2010. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. Medicine Food 13: 1086–96.

    Article  CAS  Google Scholar 

  3. Mao, Q.Q., Z. Huang, X.M. Zhong, et al. 2014. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behavioural Brain Research 261: 140–5.

    Article  CAS  PubMed  Google Scholar 

  4. Bai, Y.F., and H. Xu. 2000. Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica 21: 356–9.

    Google Scholar 

  5. Bang, J.S., H. da Oh, H.M. Choi, et al. 2009. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1 beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research and Therapy 11: R49.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sabina, E.P., S. Nagar, and M. Rasool. 2011. A role of piperine on monosodium urate crystal-induced inflammation—an experimental model of gouty arthritis. Inflammation 34: 184–92.

    Article  CAS  PubMed  Google Scholar 

  7. Murunikkara, V., S.J. Pragasam, G. Kodandaraman, et al. 2012. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats—a biochemical approach. Inflammation 35: 1348–56.

    Article  CAS  PubMed  Google Scholar 

  8. Rezaee, M.M., S. Kazemi, M.T. Kazemi, et al. 2014. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru 22: 8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bae, G.S., M.S. Kim, W.S. Jung, et al. 2010. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. European Journal Pharamacol 642: 154–62.

    Article  CAS  Google Scholar 

  10. Hendrickson, B.A., R. Gokhale, and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clinical Microbiology Reviews 15: 79–94.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fakhoury, M., R. Neqrulj, A. Mooranian, et al. 2014. Inflammatory bowel disease: Clinical aspects and treatments. Journal of Inflammation Research 7: 113–20.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Pan, H., L.H. Xu, D.Y. Ouyang, et al. 2014. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 37: 756–65.

    Article  CAS  PubMed  Google Scholar 

  13. He, J., Y. Wang, L.H. Xu, et al. 2013. Cucurbitacin IIa induces caspase-3-dependent apoptosis and enhances autophagy in lipopolysaccharide-stimulated RAW 264.7 macrophages. International Immunopharmacology 16: 27–34.

    Article  CAS  PubMed  Google Scholar 

  14. Laegreid, A., L. Thommesen, T.G. Jahr, et al. 1995. Tumor necrosis factor induces lipopolysaccharide tolerance in a human adenocarcinoma cell line mainly through the TNF p55 receptor. Journal of Biological Chemistry 270: 25418–25.

    Article  CAS  PubMed  Google Scholar 

  15. Tang, X., and Y. Zhu. 2012. TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Oncology Research 20: 15–24.

    Article  PubMed  Google Scholar 

  16. Hoffmann, E., O. Dittrich-Breiholz, H. Holtmann, et al. 2002. Multiple control of Interleukin-8 gene expression. Journal of Leukocyte Biology 72: 847–855.

    CAS  PubMed  Google Scholar 

  17. Umar, S., A.H. Golam Sarwar, K. Umar, et al. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cellular Immunology 284: 51–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shrivastava, P., K. Vaibhav, R. Tabassum, et al. 2013. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. Journal of Nutrition and Biochemistry 24: 680–7.

    Article  CAS  Google Scholar 

  19. Ying, X., X. Chen, S. Cheng, et al. 2013. Piperine inhibits IL-1β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. International Immunopharmacology 17: 293–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jang, C.H., J.H. Choi, M.S. Byun, et al. 2006. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45: 703–10.

    Article  CAS  PubMed  Google Scholar 

  21. Rossol, M., H. Heine, U. Meusch, et al. 2011. LPS-induced cytokine production in human monocytes and macrophages. Critical Reviews in Immunology 31: 379–446.

    Article  CAS  PubMed  Google Scholar 

  22. Qureshi, A.A., J.C. Reis, C.J. Papasian, et al. 2010. Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice. Lipids in Health and Disease 9: 143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sakata, A., K. Yasuda, T. Ochiai, et al. 2007. Inhibition of lipopolysaccharide-induced release of interleukin-8 from intestinal epithelial cells by SMA, a novel inhibitor of sphingomyelinase and its therapeutic effect on dextran sulphate sodium-induced colitis in mice. Cellular Immunology 245: 24–31.

    Article  CAS  PubMed  Google Scholar 

  24. Angrisano, T., R. Pero, S. Peluso, et al. 2010. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiology 10: 172.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bhattacharyya, S., A. Borthakur, N. Pant, et al. 2007. Bcl10 mediates LPS-induced activation of NF-κB and IL-8 in human intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 293: G429–37.

    Article  CAS  PubMed  Google Scholar 

  26. Hobbie, S., L.M. Chen, R.J. Davis, et al. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. Journal of Immunology 159: 5550–9.

    CAS  Google Scholar 

  27. Tapping, R.I., S. Akashi, K. Miyake, et al. 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. Journal of Immunology 165: 5780–7.

    Article  CAS  Google Scholar 

  28. Holtmann, H., R. Winzen, P. Holland, et al. 1999. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Molecular and Cellular Biology 19: 6742–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Winzen, R., M. Kracht, B. Ritter, et al. 1999. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO Journal 18: 4969–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Olafsdottir, A., G.E. Thorlacius, S. Omarsdottir, et al. 2014. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. Phytomedicine 21: 1451–7.

    Article  CAS  PubMed  Google Scholar 

  31. Crowe, S.E., L. Alvarez, M. Dytoc, et al. 1995. Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology 108: 65–74.

    Article  CAS  PubMed  Google Scholar 

  32. Baggiolini, M., and I. Clark-Lewis. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307: 97–101.

    Article  CAS  PubMed  Google Scholar 

  33. Baggiolini, M., A. Walz, and S.L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. Journal of Clinical Investigation 84: 1045–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wozniak, A., W.H. Betts, G.A. Murphy, et al. 1993. Interleukin-8 primes human neutrophils for enhanced superoxide anion production. Immunology 79: 608–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Peveri, P., A. Walz, B. Dewald, et al. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. Journal of Experimental Medicine 167: 1547–1559.

    Article  CAS  PubMed  Google Scholar 

  36. Schröder, J.M. 1989. The monocyte-derived neutrophil activating peptide (NAP/interleukin 8) stimulates human neutrophil arachidonate-5-lipoxygenase, but not the release of cellular arachidonate. Journal of Experimental Medicine 170: 847–63.

    Article  PubMed  Google Scholar 

  37. Detmers, P.A., S.K. Lo, E.E. Olsen, et al. 1990. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. Journal of Experimental Medicine 171: 1155–62.

    Article  CAS  PubMed  Google Scholar 

  38. Paccaud, J.P., J.A. Shifferli, and M. Baggiolini. 1990. NAP-1/IL-8 induced up-regulation of CR1 receptors in human neutrophil leukocytes. Biochemical and Biophysical Research Communications 166: 187–92.

    Article  CAS  PubMed  Google Scholar 

  39. Harada, A., N. Sekido, T. Akahoshi, et al. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology 56: 559–64.

    CAS  PubMed  Google Scholar 

  40. Larsen, C.G., A.G. Anderson, E. Appella, et al. 1989. The neutrophil-activating protein (NAP-I) is also chemotactic for T lymphocytes. Science 243: 1464–6.

    Article  CAS  PubMed  Google Scholar 

  41. White, M.V., T. Yoshimura, W. Hook, et al. 1989. Neutrophil attractant/activation protein-1 (NAP-I) causes human basophil histamine release. Immunology Letters 22: 151–4.

    Article  CAS  PubMed  Google Scholar 

  42. Seitz, M., B. Dewald, N. Gerber, et al. 1991. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. Journal of Clinical Investigation 87: 463–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Grimm, M.C., S.K. Elsbury, P. Pavli, et al. 1996. Interleukin 8: Cells of origin in inflammatory bowel disease. Gut 38: 90–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kaser, A., S. Zeissig, and R.S. Blumberg. 2010. Inflammatory bowel disease. Annual Review of Immunology 28: 573–621.

    Article  CAS  PubMed  Google Scholar 

  45. Huai, J.P., J. Ding, X.H. Ye, et al. 2014. Inflammatory bowel disease and risk of cholangiocarcinoma: Evidence from a meta-analysis of population-based studies. Asian Pacific Journal of Cancer Prevention 15: 3477–82.

    Article  PubMed  Google Scholar 

  46. Huang, W.S., C.H. Tseng, P.C. Chen, et al. 2014. Inflammatory bowel diseases increase future Ischemic Stroke risk: A Taiwanese population-based retrospective cohort study. European Journal of Internal Medicine 25: 561–565.

    Article  PubMed  Google Scholar 

  47. Konidari, A., and W.E. Matary. 2014. Use of thiopurines in inflammatory bowel disease: Safety issues. World J Gastrointest Pharmacol Ther 5: 63–76.

    PubMed Central  PubMed  Google Scholar 

  48. Papa, A., G. Mocci, F. Scaldaferri, M. Bonizzi, et al. 2009. New therapeutic approach in inflammatory bowel disease. European Review for Medical and Pharmacological Sciences 1: 33–5.

    Google Scholar 

  49. Rutgeerts, P. 2002. A critical assessment of new therapies in inflammatory bowel disease. Journal of Gastroenterology and Hepatology 17: S176–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 81373423 and 81173604).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yun Ouyang.

Additional information

Xiao-Feng Hou and Hao Pan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, XF., Pan, H., Xu, LH. et al. Piperine Suppresses the Expression of CXCL8 in Lipopolysaccharide-Activated SW480 and HT-29 Cells via Downregulating the Mitogen-Activated Protein Kinase Pathways. Inflammation 38, 1093–1102 (2015). https://doi.org/10.1007/s10753-014-0075-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0075-z

KEY WORDS

Navigation