Skip to main content
Log in

Nickel Induces Interleukin-1β Secretion via the NLRP3–ASC–Caspase-1 Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Exposure to nickel (Ni2+) can trigger allergic reactions in susceptible individuals, which is widely accepted as the major cause of allergic contact hypersensitivity (CHS) worldwide. Although Ni2+-induced proinflammatory responses clearly play a pivotal role in CHS, the underlying molecular mechanism has not been fully defined. Here we report that Ni2+ activates the NLRP3–ASC–caspase-1 immune signaling pathway in antigen-presenting cells, leading to the proteolytic processing and secretion of a proinflammatory cytokine, interleukin-1β (IL-1β). The activation of this signaling axis is independent of phagolysosome–cathepsin B pathway. Instead, Ni2+ induces mitochondrial reactive oxygen species accumulation and cation fluxes, both of which are required for activating the NLRP3–ASC–caspase-1 pathway. Together, these results identified a novel innate immune signaling pathway (NLRP3–ASC–caspase-1–IL-1β) activated by Ni2+ and provided a mechanistic basis for optimizing the therapeutic intervention against Ni2+-induced allergy in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freudenberg, M.A., P.R. Esser, T. Jakob, C. Galanos, and S.F. Martin. 2009. Innate and adaptive immune responses in contact dermatitis: Analogy with infections. Giornale Italiano di Dermatologia e Venereologia: Organo Ufficiale, Societa Italiana di Dermatologia e Sifilografia 144: 173–185.

    CAS  Google Scholar 

  2. Grabbe, S., and T. Schwarz. 1998. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunology Today 19: 37–44.

    Article  CAS  PubMed  Google Scholar 

  3. Spiewak, R., J. Pietowska, and K. Curzytek. 2007. Nickel: A unique allergen - from molecular structure to European legislation. Expert Review of Clinical Immunology 3: 851–859.

    Article  CAS  PubMed  Google Scholar 

  4. Liden, C., L. Skare, and M. Vahter. 2008. Release of nickel from coins and deposition onto skin from coin handling–comparing euro coins and SEK. Contact Dermatitis 59: 31–37.

    Article  PubMed  Google Scholar 

  5. Martin, S.F., and T. Jakob. 2008. From innate to adaptive immune responses in contact hypersensitivity. Current Opinion in Allergy and Clinical Immunology 8: 289–293.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, M., et al. 2010. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nature Immunology 11: 814–819.

    Article  CAS  PubMed  Google Scholar 

  7. Gross, O., C.J. Thomas, G. Guarda, and J. Tschopp. 2011. The inflammasome: An integrated view. Immunological Reviews 243: 136–151.

    Article  CAS  PubMed  Google Scholar 

  8. Ogura, Y., F.S. Sutterwala, and R.A. Flavell. 2006. The inflammasome: First line of the immune response to cell stress. Cell 126: 659–662.

    Article  CAS  PubMed  Google Scholar 

  9. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140: 821–832.

    Article  CAS  PubMed  Google Scholar 

  10. Hornung, V., et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lutz, M.B., et al. 1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods 223: 77–92.

    Article  CAS  PubMed  Google Scholar 

  12. Eisenbarth, S.C., O.R. Colegio, W. O’Connor, F.S. Sutterwala, and R.A. Flavell. 2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  13. Li, X., Z. Zhong, S. Liang, X. Wang, and F. Zhong. 2009. Effect of cryopreservation on IL-4, IFNγ and IL-6 production of porcine peripheral blood lymphocytes. Cryobiology 59: 322–326.

    Article  CAS  PubMed  Google Scholar 

  14. Zhong, F., Z.Y. Zhong, S. Liang, and X.J. Li. 2006. High expression level of soluble SARS spike protein mediated by adenovirus in HEK293 cells. World Journal of Gastroenterology: WJG 12: 1452–1457.

    CAS  PubMed  Google Scholar 

  15. Wen, J., et al. 2013. Soluble form of canine transferrin receptor inhibits canine parvovirus Infection in vitro and in vivo. BioMed Research International 2013: 172479.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhang, K., et al. 2013. Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein E. Virology 442: 156–162.

    Article  CAS  PubMed  Google Scholar 

  17. McGuire, K.A., A.U. Barlan, T.M. Griffin, and C.M. Wiethoff. 2011. Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. Journal of Virology 85: 10806–10813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nakahira, K., et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12: 222–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  PubMed  Google Scholar 

  20. Wen, H., et al. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology 12: 408–415.

    Article  CAS  PubMed  Google Scholar 

  21. Martinon, F., V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241.

    Article  CAS  PubMed  Google Scholar 

  22. Dostert, C., et al. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674–677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mariathasan, S., et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.

    Article  CAS  PubMed  Google Scholar 

  24. Winter, R.N., J.G. Rhee, and N. Kyprianou. 2004. Caspase-1 enhances the apoptotic response of prostate cancer cells to ionizing radiation. Anticancer Research 24: 1377–1386.

    CAS  PubMed  Google Scholar 

  25. Ichinohe, T., H.K. Lee, Y. Ogura, R. Flavell, and A. Iwasaki. 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. Journal of Experimental Medicine 206: 79–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Miao, E.A., et al. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nature Immunology 7: 569–575.

    Article  CAS  PubMed  Google Scholar 

  27. Li, H., A. Ambade, and F. Re. 2009. Cutting edge: Necrosis activates the NLRP3 inflammasome. Journal of Immunology 183: 1528–1532.

    Article  CAS  Google Scholar 

  28. Lee, B.H., et al. 2012. Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One 7: e35812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sharp, F.A., et al. 2009. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America 106: 870–875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Casella, J.F., M.D. Flanagan, and S. Lin. 1981. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293: 302–305.

    Article  CAS  PubMed  Google Scholar 

  31. Halle, A., et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fernandes-Alnemri, T., J.W. Yu, P. Datta, J. Wu, and E.S. Alnemri. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509–513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hornung, V., et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458: 514–518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Murakami, T., et al. 2012. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America 109: 11282–11287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhong, Z., et al. 2013. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nature Communications 4: 1611.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Petrilli, V., et al. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.

    Article  CAS  PubMed  Google Scholar 

  37. Zhong, Z., Y. Zhai, and L. Qiao. 2013. Transient receptor potential melastatin 2: A novel target for treatment of gout. Expert Opinion on Therapeutic Targets. doi:10.1517/14728222.2013.835399.

    PubMed  Google Scholar 

  38. Bolisetty, S., and E.A. Jaimes. 2013. Mitochondria and reactive oxygen species: Physiology and pathophysiology. International Journal of Molecular Sciences 14: 6306–6344.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. West, A.P., G.S. Shadel, and S. Ghosh. 2011. Mitochondria in innate immune responses. Nature Reviews Immunology 11: 389–402.

    Article  CAS  PubMed  Google Scholar 

  40. Tschopp, J. 2011. Mitochondria: Sovereign of inflammation? European Journal of Immunology 41: 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  41. Kepp, O., L. Galluzzi, and G. Kroemer. 2011. Mitochondrial control of the NLRP3 inflammasome. Nature Immunology 12: 199–200.

    Article  CAS  PubMed  Google Scholar 

  42. Iyer, S.S., et al. 2013. Mitochondrial cardiolipin is required for nlrp3 inflammasome activation. Immunity 39: 311–323.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Katherine Fitzgerald (from University of Massachusetts Medical School, USA) for providing immortalized inflammasome-deficient macrophages. This work is supported by the National Natural Science Foundation of China (31140093) and Natural Science Foundation of Hebei Province (C2013204130).

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhong, F. Nickel Induces Interleukin-1β Secretion via the NLRP3–ASC–Caspase-1 Pathway. Inflammation 37, 457–466 (2014). https://doi.org/10.1007/s10753-013-9759-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9759-z

KEY WORDS

Navigation