Skip to main content

Advertisement

Log in

Binding of CD14 to Mycoplasma genitalium-Derived Lipid-Associated Membrane Proteins Upregulates TNF-α

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lipid-associated membrane proteins (LAMPs) are a mixture of mycoplasmal lipoproteins expressed on the surface, and they are the main structures for interaction with the host cells. The objective of this study was to explore the role of CD14 in immune recognition of Mycoplasma genitalium-derived LAMPs and investigate whether the binding of CD14 to LAMPs affects the inflammatory response. Enzyme-linked immunosorbent assay (ELISA), transient co-transfection, dual-luciferase reporter assay, specific inhibition assay, and competitive inhibition ELISA (CI-ELISA) were used. CD14 was involved in LAMP-stimulated production of tumor necrosis factor (TNF)-α by blocking CD14 antibody in THP-1 cells. Co-transfection experiments in HeLa cells provide evidence that CD14 facilitates LAMP-induced TNF-α release via toll-like receptor 2 (TLR2). In addition, LAMP-induced TNF-α release was increased by soluble CD14 but decreased by soluble TLR2. Lipid moieties of LAMPs pre-treated with lipoprotein lipase were responsible for TNF-α production. The binding of CD14 to LAMPs was supported by binding assay and CI-ELISA. Thus, we provide evidences that CD14 is not only able to recognize LAMPs but also its binding to LAMPs upregulates TNF-α release. These findings provide insight into the function of CD14 and the pathogenesis of mycoplasmal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Zgorniak-Nowosielska, I. 1967. Mycoplasma and its role in human diseases. Postepy Higieny I Medycyny Doswiadczalnej 21: 497–510.

    CAS  PubMed  Google Scholar 

  2. Rakovskaia, I.V., L.G. Gorina, D.N. Balabanov, G.A. Levina, O.I. Barkhatova, S.A. Goncharova, and N.A. Gamova. 2013. Generalized mycoplasma infection in patients and carriers. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii :37–43.

  3. Horner, P.J., and D. Taylor-Robinson. 1994. Mycoplasma genitalium and non-gonococcal urethritis. Lancet 343: 790–791.

    Article  CAS  PubMed  Google Scholar 

  4. Korte, J.E., J.B. Baseman, M.P. Cagle, C. Herrera, J.M. Piper, A.E. Holden, S.T. Perdue, J.D. Champion, and R.N. Shain. 2006. Cervicitis and genitourinary symptoms in women culture positive for Mycoplasma genitalium. American Journal of Reproductive Immunology 55: 265–275.

    Article  PubMed  Google Scholar 

  5. Taylor-Robinson, D., C.B. Gilroy, S. Horowitz, and J. Horowitz. 1994. Mycoplasma genitalium in the joints of two patients with arthritis. European Journal of Clinical Microbiology & Infectious Diseases 13: 1066–1069.

    Article  CAS  Google Scholar 

  6. Martinelli, F., E. Garrafa, A. Turano, and A. Caruso. 1999. Increased frequency of detection of Ureaplasma urealyticum and Mycoplasma genitalium in AIDS patients without urethral symptoms. Journal of Clinical Microbiology 37: 2042–2044.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Choi, S.Y., J.W. Lim, T. Shimizu, K. Kuwano, J.M. Kim, and H. Kim. 2012. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflammation Research 61: 493–501.

    Article  CAS  PubMed  Google Scholar 

  8. Adamu, J.Y., N.K. Wawegama, G.F. Browning, and P.F. Markham. 2013. Membrane proteins of Mycoplasma bovis and their role in pathogenesis. Research in Veterinary Science 95: 321–325.

    Google Scholar 

  9. Kurai, D., K. Nakagaki, H. Wada, T. Saraya, S. Kamiya, Y. Fujioka, K. Nakata, H. Takizawa, and H. Goto. 2013. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: implication for mycoplasmal pneumonia. Inflammation 36: 285–293.

    Article  PubMed  Google Scholar 

  10. Kaufmann, A., P.F. Muhlradt, D. Gemsa, and H. Sprenger. 1999. Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2. Infection and Immunity 67: 6303–6308.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Shibata, K., A. Hasebe, T. Into, M. Yamada, and T. Watanabe. 2000. The N-terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. Journal of Immunology 165: 6538–6544.

    CAS  Google Scholar 

  12. You, X., Y. Wu, Y. Zeng, Z. Deng, H. Qiu, and M. Yu. 2008. Mycoplasma genitalium-derived lipid-associated membrane proteins induce activation of MAPKs, NF-kappaB and AP-1 in THP-1 cells. FEMS Immunology and Medical Microbiology 52: 228–236.

    Article  CAS  PubMed  Google Scholar 

  13. Meuleman, P., S. Steyaert, L. Libbrecht, S. Couvent, F. Van Houtte, F. Clinckspoor, B. de Hemptinne, T. Roskams, P. Vanlandschoot, and G. Leroux-Roels. 2006. Human hepatocytes secrete soluble CD14, a process not directly influenced by HBV and HCV infection. Clinica Chimica Acta 366: 156–162.

    Article  CAS  Google Scholar 

  14. Koethe, J.R., A. Bian, A.K. Shintani, C.W. Wester, H. Erdem, and T. Hulgan. 2013. An association between adiposity and serum levels of macrophage inflammatory protein-1alpha and soluble CD14 in HIV-infected adults: results from a cross-sectional study. Antiviral Therapy, in press

  15. Vignal, C., Y. Guerardel, L. Kremer, M. Masson, D. Legrand, J. Mazurier, and E. Elass. 2003. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. Journal of Immunology 171: 2014–2023.

    CAS  Google Scholar 

  16. Shin, H.J., H. Lee, J.D. Park, H.C. Hyun, H.O. Sohn, D.W. Lee, and Y.S. Kim. 2007. Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins. Molecules and Cells 24: 119–124.

    CAS  PubMed  Google Scholar 

  17. Bas, S., L. Neff, M. Vuillet, U. Spenato, T. Seya, M. Matsumoto, and C. Gabay. 2008. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. Journal of Immunology 180: 1158–1168.

    CAS  Google Scholar 

  18. Kajava, A.V., and T. Vasselon. 2010. A network of hydrogen bonds on the surface of TLR2 controls ligand positioning and cell signaling. Journal of Biological Chemistry 285: 6227–6234.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Iwaki, D., H. Mitsuzawa, S. Murakami, H. Sano, M. Konishi, T. Akino, and Y. Kuroki. 2002. The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. Journal of Biological Chemistry 277: 24315–24320.

    Article  CAS  PubMed  Google Scholar 

  20. Burger-Kentischer, A., I.S. Abele, D. Finkelmeier, K.H. Wiesmuller, and S. Rupp. 2010. A new cell-based innate immune receptor assay for the examination of receptor activity, ligand specificity, signalling pathways and the detection of pyrogens. Journal of Immunological Methods 358: 93–103.

    Article  CAS  PubMed  Google Scholar 

  21. Shimizu, T., Y. Kida, and K. Kuwano. 2004. Lipid-associated membrane proteins of Mycoplasma fermentans and M. penetrans activate human immunodeficiency virus long-terminal repeats through toll-like receptors. Immunology 113: 121–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Youn, J.H., Y.J. Oh, E.S. Kim, J.E. Choi, and J.S. Shin. 2008. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. Journal of Immunology 180: 5067–5074.

    CAS  Google Scholar 

  23. da Rocha Sobrinho, H.M., R. Jarach, N.A. da Silva, M.T. Shio, S. Jancar, J. Timenetsky, M.A. Oliveira, M.L. Dorta, and F. Ribeiro-Dias. 2011. Mycoplasmal lipid-associated membrane proteins and Mycoplasma arthritidis mitogen recognition by serum antibodies from patients with rheumatoid arthritis. Rheumatology International 31: 951–957.

    Article  PubMed  Google Scholar 

  24. Zeng, Y., Y. Wu, Z. Deng, X. You, C. Zhu, M. Yu, and Y. Wan. 2008. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma penetrans is mediated by nuclear factor kappaB activation in mouse macrophage. Canadian Journal of Microbiology 54: 150–158.

    Article  CAS  PubMed  Google Scholar 

  25. Shimizu, T., Y. Kida, and K. Kuwano. 2008. Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infection and Immunity 76: 270–277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nakamura, J., K. Shibata, A. Hasebe, T. Into, T. Watanabe, and N. Ohata. 2002. Signaling pathways induced by lipoproteins derived from Mycoplasma salivarium and a synthetic lipopeptide (FSL-1) in normal human gingival fibroblasts. Microbiology and Immunology 46: 151–158.

    Article  CAS  PubMed  Google Scholar 

  27. Rapsinski, G.J., T.N. Newman, G.O. Oppong, J.P. van Putten, and C. Tukel. 2013. CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers. Journal of Biological Chemistry 288: 14178–14188.

    Article  CAS  PubMed  Google Scholar 

  28. He, J., X. You, Y. Zeng, M. Yu, L. Zuo, and Y. Wu. 2009. Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-kappaB through toll-like receptors 1, 2, and 6 and CD14 in a MyD88-dependent pathway. Clinical and Vaccine Immunology 16: 1750–1757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sauter, K.S., M. Brcic, M. Franchini, and T.W. Jungi. 2007. Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Veterinary Immunology and Immunopathology 118: 92–104.

    Article  CAS  PubMed  Google Scholar 

  30. LeBouder, E., J.E. Rey-Nores, N.K. Rushmere, M. Grigorov, S.D. Lawn, M. Affolter, G.E. Griffin, P. Ferrara, E.J. Schiffrin, B.P. Morgan, and M.O. Labeta. 2003. Soluble forms of toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. Journal of Immunology 171: 6680–6689.

    CAS  Google Scholar 

  31. Ueland, T., T. Espevik, J. Kjekshus, L. Gullestad, T. Omland, I.B. Squire, S.S. Froland, T.E. Mollnes, K. Dickstein, and P. Aukrust. 2006. Mannose binding lectin and soluble toll-like receptor 2 in heart failure following acute myocardial infarction. Journal of Cardiac Failure 12: 659–663.

    Article  CAS  PubMed  Google Scholar 

  32. Srinivasan, M., K.N. Kodumudi, and S.L. Zunt. 2008. Soluble CD14 and toll-like receptor-2 are potential salivary biomarkers for oral lichen planus and burning mouth syndrome. Clinical Immunology 126: 31–37.

    Article  CAS  PubMed  Google Scholar 

  33. Raby, A.C., E. Le Bouder, C. Colmont, J. Davies, P. Richards, B. Coles, C.H. George, S.A. Jones, P. Brennan, N. Topley, and M.O. Labeta. 2009. Soluble TLR2 reduces inflammation without compromising bacterial clearance by disrupting TLR2 triggering. Journal of Immunology 183: 506–517.

    Article  CAS  Google Scholar 

  34. Manukyan, M., K. Triantafilou, M. Triantafilou, A. Mackie, N. Nilsen, T. Espevik, K.H. Wiesmuller, A.J. Ulmer, and H. Heine. 2005. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. European Journal of Immunology 35: 911–921.

    Article  CAS  PubMed  Google Scholar 

  35. Nakata, T., M. Yasuda, M. Fujita, H. Kataoka, K. Kiura, H. Sano, and K. Shibata. 2006. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of toll-like receptors 2 and 1 without binding to the complex. Cellular Microbiology 8: 1899–1909.

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu, T., Y. Kida, and K. Kuwano. 2008. A triacylated lipoprotein from Mycoplasma genitalium activates NF-kappaB through toll-like receptor 1 (TLR1) and TLR2. Infection and Immunity 76: 3672–3678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shimizu, T., Y. Kida, and K. Kuwano. 2005. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. Journal of Immunology 175: 4641–4646.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (81172890), Project Foundation of Health Department of Hunan Province (B2011-058), Research Foundation of Education Department of Hunan Province (10C1133), and the 12th 5-year Technology Innovation Team in University of South China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Wang, S., Zeng, Y. et al. Binding of CD14 to Mycoplasma genitalium-Derived Lipid-Associated Membrane Proteins Upregulates TNF-α. Inflammation 37, 322–330 (2014). https://doi.org/10.1007/s10753-013-9743-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9743-7

KEY WORDS

Navigation