Skip to main content

Advertisement

Log in

Effects of (20S*,24R*)-epoxy-9,19-cyclolanstane-3β,12β,16β,25-pentaol-3-O-β-d-xylopyranoside Extracted from Rhizoma Beesia on Immunoregulation and Anti-inflammation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

(20S*,24R*)-epoxy-9,19-cyclolanstane-3β,12β,16β,25-pentaol-3-O-β-d-xylopyranoside (BC1) is a kind of natural bioactive substance extracted from Beesia calthaefolia (Maxim.)Ulbr. This study was designed to evaluate the effects of BC1 on the proliferation of lymphocytes, phagocytosis of peritoneal macrophage, and cytokine secretion, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and the foot pad thickness index, which is beneficial for understanding the mechanism of BC1 on immunoregulation and anti-inflammation and also will benefit our further research. The proliferation of splenic lymphocyte induced by mitogen (concanavalin A or lipopolysaccharide (LPS)) was detected using the cell counting kit assay. The neutral red phagocytic test of macrophages was determined by colorimetric method. The gene and protein expressions of TNF-α and IL-1β were measured by real time RT-PCR and ELISA in serum, spleen, and lymphocytes, respectively. In vitro, our present study has shown that BC1 (31.25–250 μg/ml) could inhibit the proliferation of splenic lymphocyte and phagocytosis of macrophages, and inhibit the increased production of TNF-α and IL-1β in protein and gene levels. In mice, LPS could increase the gene and protein expressions of TNF-α and IL-1β, respectively, but BC1 (12.5–50 μg/kg) could recover the increased gene and protein expressions of TNF-α and IL-1β induced by LPS in the spleen and serum of mice. Treatment of arthritic rats with BC1 (1.5 mg/kg body weight) resulted in a significant reduction in foot pad thickness index and serum TNF-α level comparable to the indomethacin-treated arthritic rats, proving its anti-inflammatory effect. Thus, the function of immunoregulation of BC1 may be accomplished through modulating the gene and protein expressions of TNF-α and IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Ju, J.H., D. Liu, G. Lin, X.D. Xu, B. Han, J.S. Yang, G.Z. Tu, and L.B. Ma. 2002. Beesiosides A-F, six new cycloartane triterpene glycosides from Beesia calthaefolia. Journal of Natural Products 65(1): 42–47.

    Article  CAS  Google Scholar 

  2. Rasool, M., and E.P. Sabina. 2007. Antiinflammatory effect of the Indian ayurvedic herbal formulation triphala on adjuvant-induced arthritis in mice. Phytotherapy Research 21: 889–894.

    Article  CAS  Google Scholar 

  3. Wang, C.Y., L. Li, H. Guan, S.Y. Tong, M.Q. Liu, C. Liu, Z.Y. Zhang, C.G. Du, and P.F. Li. 2013. Effect of taurocholic acid on immunoregulation in mice. International Immunopharmacology 15(2): 217–222.

    Article  CAS  Google Scholar 

  4. Zhang, S., Q. Wang, W.F. Li, H.Y. Wang, and H.J. Zhang. 2004. Enhanced anti tumor immunity by murine cytokine activated T lymphocytes after cocultured with bone marrow derived dendritic cells pulsed with whole tumor lysates. Leukemia Research 28(10): 1085–1088.

    Article  CAS  Google Scholar 

  5. He, X.L., P. Zhang, X.Z. Dong, M.H. Yang, S.L. Chen, and M.G. Bi. 2012. JR6, a new compound isolated from Justicia procumbens, induces apoptosis in human bladder cancer EJ cells through caspase-dependent pathway. Journal of Ethnopharmacology 144(2): 284–292.

    Article  CAS  Google Scholar 

  6. Shih, M.F., Y.D. Cheng, C.R. Shen, and J.Y. Cherng. 2010. A molecular pharmacology study into the anti-inflammatory actions of Euphorbia hirta L. on the LPS-induced RAW 264.7 cells through selective iNOS protein inhibition. Journal of Natural Medicines 64(3): 330–335.

    Article  CAS  Google Scholar 

  7. Premprasert, C., S. Tewtrakul, A. Plubrukarn, and J. Wungsintaweekul. 2013. Anti-inflammatory activity of diterpenes from Croton stellatopilosus on LPS-induced RAW264.7 cells. Journal of Natural Medicines 67(1): 174–181.

    Article  CAS  Google Scholar 

  8. Tocharus, J., S. Jamsuwan, C. Tocharus, C. Changtam, and A. Suksamrarn. 2012. Curcuminoid analogs inhibit nitric oxide production from LPS-activated microglial cells. Journal of Natural Medicines 66(2): 400–405.

    Article  CAS  Google Scholar 

  9. Ju, J.H., G. Lin, J.S. Yang, H.Y. Lu, B.N. Ma, S.Q. Nie, and X. Zhang. 2002. Structures and pharmacological activities of beesiosides O and P. Yao Xue Xue Bao 37(10): 788–792.

    CAS  PubMed  Google Scholar 

  10. Pan, R.L., D.H. Chen, J.Y. Si, X.H. Zhao, Z. Li, and L. Cao. 2009. Immunosuppressive effects of new cyclolanostane triterpene diglycosides from the aerial part of Cimicifuga foetida. Archives of Pharmacal Research 32(2): 185–190.

    Article  CAS  Google Scholar 

  11. Nishida, M., H. Yoshimitsu, and T. Nohara. 2003. Three cycloartane glycosides from Cimicifuga rhizome and their immuno-suppressive activities in mouse allogeneic mixed lymphocyte reaction. Chemical and Pharmaceutical Bulletin 51(3): 354–356.

    Article  CAS  Google Scholar 

  12. Yawata, A., Y. Matsuhashi, H. Kato, K. Uemura, G. Kusano, J. Ito, T. Chikuma, and H. Hojo. 2009. Inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity by cimicifugoside, a triterpenoids from Cimicifuga simplex. European Journal of Pharmaceutical Sciences 38(4): 355–361.

    Article  CAS  Google Scholar 

  13. Takahira, M., A. Kusano, M. Shibano, G. Kusano, K. Koizumi, R. Suzuki, H.S. Kim, and Y. Wataya. 1998. Antimalarial activity and nucleoside transport inhibitory activity of the triterpenic constituents of Cimicifuga spp. Biological and Pharmaceutical Bulletin 21(8): 823–828.

    Article  CAS  Google Scholar 

  14. Toussirot, E., and D. Wendling. 2004. The use of TNF-α blocking agents in rheumatoid arthritis: An overview. Expert Opinion on Pharmacotherapy 5(3): 581–594.

    Article  CAS  Google Scholar 

  15. Russo, C., and R. Polosa. 2005. TNF-α as a promising therapeutic target in chronic asthma: A lesson from rheumatoid arthritis. Clinical Science 109(2): 135–142.

    Article  CAS  Google Scholar 

  16. Idriss, H.T., and J.H. Naismith. 2000. TNF alpha and the TNF receptor superfamily: Structure–function relationship(s). Microscopy Research and Technique 50(3): 184–195.

    Article  CAS  Google Scholar 

  17. Banerjee, A., E.E. Moore, N.J. McLaughlin, L. Lee, W.L. Jones, J.L. Johnson, T.L. Nydam, and C.C. Silliman. 2013. Hyperosmolarity attenuates TNF-α-mediated proinflammatory activation of human pulmonary microvascular endothelial cells. Shock 39(4): 366–372.

    Article  CAS  Google Scholar 

  18. Lee, S.H., E. Lee, and Y.T. Ko. 2012. Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats. BMB Reports 45(6): 371–376.

    Article  CAS  Google Scholar 

  19. Luster, M.I., D.R. Germolec, T. Yoshida, F. Kayama, and M. Thompson. 1994. Endotoxin-induced cytokine gene expression and excretion in the liver. Hepatology 19(2): 480–488.

    Article  CAS  Google Scholar 

  20. Aono, K., K. Isobe, K. Kiuchi, Z.H. Fan, M. Ito, A. Takeuchi, M. Miyachi, I. Nakashima, and Y. Nimura. 1997. In vitro and in vivo expression of inducible nitric oxide synthase during experimental endotoxemia: Involvement of other cytokines. Journal of Cellular Biochemistry 65(3): 349–358.

    Article  CAS  Google Scholar 

  21. Newton, R.C., and C.P. Decicco. 1999. Therapeutic potential and strategies for inhibiting tumor necrosis factor-alpha. Journal of Medicinal Chemistry 42(13): 2295–2314.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by grants from the National Natural Science Foundation (no. 31000152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai-Hong Guo or Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, XZ., Guo, DH., Liu, P. et al. Effects of (20S*,24R*)-epoxy-9,19-cyclolanstane-3β,12β,16β,25-pentaol-3-O-β-d-xylopyranoside Extracted from Rhizoma Beesia on Immunoregulation and Anti-inflammation. Inflammation 37, 277–286 (2014). https://doi.org/10.1007/s10753-013-9738-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9738-4

KEY WORDS

Navigation