Skip to main content

Advertisement

Log in

Paeoniflorin Attenuates Lipopolysaccharide-Induced Permeability of Endothelial Cells: Involvements of F-Actin Expression and Phosphorylations of PI3K/Akt and PKC

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of paeoniflorin, the main active ingredient of the medicinal plant Paeonia lactiflora Pall., on the permeability of endothelial cells induced by lipopolysaccharide (LPS) and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were stimulated by LPS. Extravasated FITC-dextran reflecting permeability was assessed by multimode microplate reader, and the migration of bis-carboxyethyl-carboxyfluorescein acetoxy-methyl-labeled human acute monocytic leukemia cell line and leukemia cell line cells through HUVECs were analyzed by fluorescence microscopy. The phosphorylations of phosphatidylinositol 3-kinase (PI3K)/Akt, protein kinase C (PKC), and cofilin in HUVECs were assessed by western blotting, and the F-actin level was detected by laser scanning confocal microscopy. After LPS stimulation, inflammatory endothelial cells exhibited significantly increased permeability. Paeoniflorin (10, 30, and 100 μM) inhibited dextran extravasation and leukocyte migration through HUVECs induced by LPS in a concentration-dependent manner. Moreover, paeoniflorin was able to suppress the phosphorylations of PI3K/Akt, PKC, and cofilin, as well as F-actin reorganization in HUVECs induced by LPS. These findings revealed that paeoniflorin partly blocked LPS-induced endothelium permeability, supporting a new explanation for its anti-inflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang, S., W. Zhu, Y. Zhang, Y. Shu, and P. Liu. 2012. Paeoniflorin modulates multidrug resistance of a human gastric cancer cell line via the inhibition of NF-Κb activation. Molecular Medicine Report 5: 351–356.

    CAS  Google Scholar 

  2. Xu, H., X.H. Gao, J. Song, F.Y. Wang, Z. Xu, D. Lu, X.X. Xu, Y.F. Xia, and Y. Dai. 2010. Peoniflorin prevents the adhesion between inflammatory endothelial cells and leukocytes through inhibiting the activation of MAPKs and NF-κB. Drug Development Research 71: 275–284.

    Article  CAS  Google Scholar 

  3. Vandenbroucke, E., D. Mehta, R. Minshall, and A.B. Malik. 2008. Regulation of endothelial junctional permeability. Annals of the New York Academy of Sciences 1123: 134–145.

    Article  PubMed  CAS  Google Scholar 

  4. Prasain, N., and T. Stevens. 2009. The actin cytoskeleton in endothelial cell phenotypes. Microvascular Research 77: 53–63.

    Article  PubMed  CAS  Google Scholar 

  5. Geiger, B., A. Bershadsky, R. Pankov, and K.M. Yamada. 2001. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology 2: 793–805.

    Article  PubMed  CAS  Google Scholar 

  6. Patterson, C.E., and H. Lum. 2001. Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium-New York 8: 75–105.

    CAS  Google Scholar 

  7. Curtis, T.M., P.J. McKeown-Longo, P.A. Vincent, S.M. Homan, E.M. Wheatley, and T.M. Saba. 1995. Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. The American Journal of Physiology 269: L248–L260.

    PubMed  CAS  Google Scholar 

  8. Dolly, M., and B.M. Asrar. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.

    Article  Google Scholar 

  9. Bogatcheva, N.V., and A.D. Verin. 2008. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvascular Research 76: 202–207.

    Article  PubMed  CAS  Google Scholar 

  10. Lai, C.H., K.H. Kuo, and J.M. Leo. 2005. Critical role of actin in modulating BBB permeability. Brain Research Reviews 50: 7–13.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, S.H., and R. Dominguez. 2010. Regulation of actin cytoskeleton dynamics in cells. Molecules and Cells 29: 311–325.

    Article  PubMed  CAS  Google Scholar 

  12. Gohla, A., and G.M. Bokoch. 2002. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology 12: 1704–1710.

    Article  PubMed  CAS  Google Scholar 

  13. Dreiza, C.M., C.M. Brophy, P. Komalavilas, E.J. Furnish, L. Joshi, M.A. Pallero, J.E. Murphy-Ullrich, M. von Rechenberg, Y.S. Ho, B. Richardson, N. Xu, Y. Zhen, J.M. Peltier, and A. Panitch. 2005. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. The FASEB Journal 19: 261–263.

    CAS  Google Scholar 

  14. Ghosh, M., X. Song, G. Mouneimne, M. Sidani, D.S. Lawrence, and J.S. Condeelis. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746.

    Article  PubMed  CAS  Google Scholar 

  15. Maciver, S.K., and P.J. Hussey. 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biology 3: 3007.1–3007.12.

    Article  Google Scholar 

  16. Bamburg, J.R., A. McGough, and S. Ono. 1999. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends in Cell Biology 9: 364–370.

    Article  PubMed  CAS  Google Scholar 

  17. Li, S., Q.B. He, and K.S. Zhou. 2003. The research of vascular permeability between Protein kinase C and endothelial cytoskeletal protein. Journal Chinese of Microcirculation 7: 184–190.

    Google Scholar 

  18. Mattila, P., M.L. Majuri, S. Tiisala, and R. Renkonen. 1994. Expression of six protein kinase C isotypes in endothelial cells. Life Sciences 55: 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  19. Haller, H., W. Ziegler, C. Lindschau, and F.C. Luft. 1996. Endothelial cell tyrosine kinase receptor and G protein-coupled receptor activation involves distinct protein kinase C isoforms. Arteriosclerosis, Thrombosis, and Vascular Biology 16: 678–686.

    Article  PubMed  CAS  Google Scholar 

  20. Tang, S., K.G. Morgan, C. Parker, and J.A. Ware. 1997. Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. Journal of Biological Chemistry 272: 28704–28711.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, Y.M., Y.F. Wang, F.J. Wang, J. Deng, D.H. Wu, H. Su, Y.M. Zhang, N. Wang, D.L. Zhang, and J.P. Ouyang. 2008. The expression of cofilin-1 via PKC pathway induced by hyperglycemia in endothelial cells. The FASEB Journal 22: 964.

    Google Scholar 

  22. Katso, R., K. Okkenhaug, K. Ahmadi, S. White, J. Timms, and M.D. Waterfield. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology 17: 615–675.

    Article  PubMed  CAS  Google Scholar 

  23. Partovian, C., and M. Simons. 2004. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Communication and Signaling 16: 951–957.

    Article  CAS  Google Scholar 

  24. Minshall, R.D., E.E. Vandenbroucke, M. Holinstat, A.T. Place, C. Tiruppathi, S.M. Vogel, G.P. van Nieuw Amerongen, D. Mehta, and A.B. Malik. 2010. Role of protein kinase Cζ in thrombin-induced RhoA activation and interendothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvascular Research 80: 240–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Program for Changjiang Scholars and Innovative Research Team in University (IRT1193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Xia or Yue Dai.

Additional information

Huan Xu and Jie Song equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Song, J., Gao, X. et al. Paeoniflorin Attenuates Lipopolysaccharide-Induced Permeability of Endothelial Cells: Involvements of F-Actin Expression and Phosphorylations of PI3K/Akt and PKC. Inflammation 36, 216–225 (2013). https://doi.org/10.1007/s10753-012-9537-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9537-3

KEY WORDS

Navigation