Skip to main content

Advertisement

Log in

Regulation of Oxidative Stress in Patients with Kawasaki Disease

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Although there is ample evidence that Kawasaki disease (KD) is associated with vascular inflammation, few studies have addressed the influence of oxidative stress. The goal of this study was to determine whether oxidative stress contributes to inflammation during KD, and also whether corticosteroid therapy can reduce oxidative stress. Serum reduced glutathione (sGSH) and serum thioredoxin (sTRX) were measured during KD to evaluate the phase-dependent change in the redox state in KD. Additionally, the efficacy of the therapies to reduce oxidative stress was assessed. The sGSH level significantly decreased post-intravenous immunoglobulin (IVIG). The sGSH level significantly increased during the convalescent phase. The sTRX level was significantly lower during the convalescent phase than that during the pre- and the post-IVIG. There was no difference in the sGSH and sTRX changes between the IVIG therapy and the IVIG + prednisolone (PSL) therapy, except for the convalescent phase in sTRX. Systemic inflammation in KD induces changes in the redox state, whereas the IVIG + PSL therapy did not show any remarkable change on oxidative stress in comparison to the IVIG therapy. Therapeutic intervention against oxidative stress might therefore be beneficial as adjunctive therapies for KD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein 1

AST:

Aspartate aminotransferase

CAAs:

Coronary arteries abnormalities

CRP:

C-reactive protein

DTNB:

5–5,-dithiobis-2-nitrobenzoic acid

ELISA:

Enzyme-linked immunosorbent assay

GSH:

Reduced glutathione

GSSG:

Oxidized GSH

H2O2 :

Superoxide radicals and hydrogen peroxide

IL-1:

Interleukin-1

IL-6:

Interleukin-6

IVIG:

Intravenous immunoglobulin

β-NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor-κB

Nrf2:

NF-E2-related factor 2

NTB:

2-Nitro-5-thiobenzoic acid

PSL:

Prednisolone

Redox:

Reduction–oxidation

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-α

TRX:

Thioredoxin

REFERENCES

  1. Burns, J.C., and M.P. Glode. 2004. Kawasaki syndrome. Lancet 364: 533–544.

    Article  PubMed  Google Scholar 

  2. Furusho, K., T. Kamiya, H. Nakano, N. Kiyosawa, K. Shinomiya, T. Hayashidera, et al. 1984. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 2: 1055–8.

    Article  PubMed  CAS  Google Scholar 

  3. Newburger, J.W., M. Takahashi, J.C. Burns, A.S. Beiser, K.J. Chung, C.E. Duffy, et al. 1986. Treatment of Kawasaki syndrome with intravenous gamma globulin. The New England Journal of Medicine 315: 341–7.

    Article  PubMed  CAS  Google Scholar 

  4. Shinohara, M., K. Sone, T. Tomomasa, and A. Morikawa. 1999. Corticosteroids in the treatment of the acute phase of Kawasaki disease. Journal of Pediatrics 135: 411–413.

    Article  Google Scholar 

  5. Okada, Y., M. Shinohara, T. Kobayashi, Y. Inoue, T. Tomomasa, T. Kobayashi, and A. Morikawa. 2003. Gunma Kawasaki Disease Study Group. Effect of corticosteroids in addition to intravenous gamma globulin therapy on serum cytokine levels in the acute phase of Kawasaki disease in children. Journal of Pediatrics 143: 363–367.

    Article  PubMed  CAS  Google Scholar 

  6. Deneke, S.M., and B.L. Fanburg. 1989. Regulation of cellular glutathione. American Journal of Physiology 257: L163–L173.

    PubMed  CAS  Google Scholar 

  7. Meister, A. 1988. Glutathione metabolism and its selective modification. Journal of Biological Chemistry 263: 17205–17208.

    PubMed  CAS  Google Scholar 

  8. Hoshino, T., H. Nakamura, M. Okamoto, S. Kato, S. Araya, K. Nomiyama, K. Oizumi, H.A. Young, H. Aizawa, and J. Yodoi. 2003. Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. American Journal of Respiratory and Critical Care Medicine 168: 1075–83.

    Article  PubMed  Google Scholar 

  9. Van der Vliet, A., C.A. O’Neill, C.E. Cross, J.M. Koostra, W.G. Volz, B. Halliwell, and S. Louie. 1999. Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. American Journal of Physiology 276: L289–296.

    PubMed  Google Scholar 

  10. Torii, M., L. Wang, N. Ma, K. Saito, T. Hori, M. Sato-Ueshima, Y. Koyama, H. Nishikawa, N. Katayama, A. Mizoguchi, H. Shiku, J. Yodoi, K. Kuribayashi, and T. Kato. 2010. Thioredoxin suppresses airway inflammation independently of systemic Th1/Th2 immune modulation. European Journal of Immunology 40: 787–96.

    Article  PubMed  CAS  Google Scholar 

  11. Vassalle, C., L. Petrozzi, N. Botto, M.G. Andreassi, and G.C. Zucchelli. 2004. Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. Journal of Internal Medicine 256: 308–315.

    Article  PubMed  CAS  Google Scholar 

  12. Takatsuki, S., Y. Ito, D. Takeuchi, H. Hoshida, T. Nakayama, H. Matsuura, and T. Saji. 2009. IVIG reduced vascular oxidative stress in patients with Kawasaki disease. Circulation Journal 73: 1315–8.

    Article  PubMed  CAS  Google Scholar 

  13. Straface, E., L. Gambardella, A. Metere, A. Marchesi, G. Palumbo, E. Cortis, A. Villani, D. Pietraforte, M. Viora, W. Malorni, and D. Del Principe. 2010. Oxidative stress and defective platelet apoptosis in naïve patients with Kawasaki disease. Biochemical and Biophysical Research Communications 392: 426–30.

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi, T., Y. Inoue, K. Takeuchi, Y. Okada, K. Tamura, T. Tomomasa, T. Kobayashi, and A. Morikawa. 2006. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 113: 2606–12.

    Article  PubMed  Google Scholar 

  15. Harada, K. 1991. Intravenous gamma-globulin treatment in Kawasaki disease. Acta Paediatrica Japonica 33: 805–810.

    Article  PubMed  CAS  Google Scholar 

  16. Ayusawa, M., T. Sonobe, S. Uemura, S. Ogawa, Y. Nakamura, N. Kiyosawa, M. Ishii, and K. Harada. 2005. Kawasaki Disease Research Committee. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatrics International 47: 232–234.

    Article  PubMed  Google Scholar 

  17. Todokoro, M., H. Mochizuki, K. Tokuyama, M. Utsugi, K. Dobashi, M. Mori, and A. Morikawa. 2004. Effect of ozone exposure on intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 28: 105–14.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, J., H. Mochizuki, M. Todokoro, H. Arakawa, and A. Morikawa. 2008. Does leukotriene affect intracellular glutathione redox state in cultured human airway epithelial cells? Antioxidants & Redox Signaling 10: 821–8.

    Article  CAS  Google Scholar 

  19. Mochizuki, H., M. Todokoro, and H. Arakawa. 2009. RS virus-induced inflammation and the intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 32: 252–64.

    Article  PubMed  CAS  Google Scholar 

  20. Sumida, Y., T. Nakashima, T. Yoh, Y. Nakajima, H. Ishikawa, H. Mitsuyoshi, Y. Sakamoto, T. Okanoue, K. Kashima, H. Nakamura, and J. Yodoi. 2000. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. Journal of Hepatology 33: 616–622.

    Article  PubMed  CAS  Google Scholar 

  21. Pennathur, S., and J.W. Heinecke. 2007. Oxidative stress endothelial dysfunction in vascular disease. Curr Disab Res 7: 257–264.

    Article  CAS  Google Scholar 

  22. Taniguchi, N., H. Kaneto, M. Asahi, M. Takahashi, C. Wenyi, S. Higashiyama, J. Fujii, K. Suzuki, and Y. Kayanoki. 1996. Involvement of glycation and oxidative stress in diabetic macroangiopathy. Diabetes 45(Suppl 3): S81–83.

    PubMed  CAS  Google Scholar 

  23. Yildirim, O., and Z. Buyukbingol. 2003. Effect of cobalt on the oxidative status in heart and aorta of streptozocin-induced diabetes rats. Cell Biochemistry and Function 21: 27–33.

    Article  PubMed  CAS  Google Scholar 

  24. Shen, C.T., and N.K. Wang. 2001. Antioxidants may mitigate the deterioration of coronary arteritis in patients with Kawasaki disease unresponsive to high-dose intravenous gamma-globulin. Pediatric Cardiology 22: 419–22.

    Article  PubMed  CAS  Google Scholar 

  25. Matsubara, T., S. Furukawa, and K. Yabuta. 1990. Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clinical Immunology and Immunopathology 56: 29–36.

    Article  PubMed  CAS  Google Scholar 

  26. Biswas, S.K., and I. Rahman. 2009. Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Molecular Aspects of Medicine 30: 60–76.

    Article  PubMed  CAS  Google Scholar 

  27. Dobashi, K., M. Aihara, T. Araki, Y. Shimizu, M. Utsugi, K. Iizuka, Y. Murata, J. Hamuro, T. Nakazawa, and M. Mori. 2001. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clinical and Experimental Immunology 124: 290–296.

    Article  PubMed  CAS  Google Scholar 

  28. Utsugi, M., K. Dobashi, Y. Koga, Y. Shimizu, T. Ishizuka, K. Iizuka, J. Hamuro, T. Nakazawa, and M. Mori. 2002. Glutathione redox regulates lipopolysaccharide-induced IL-12 production through p38 mitogen-activated protein kinase activation in human monocytes: role of glutathione redox in IFN-gamma priming of IL-12 production. Journal of Leukocyte Biology 71: 339–347.

    PubMed  CAS  Google Scholar 

  29. Calhoun, W.J., H.E. Reed, D.R. Moest, and C.A. Stevens. 1992. Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. American Review of Respiratory Disease 145: 317–325.

    PubMed  CAS  Google Scholar 

  30. Bunnell, E., and E. Pacht. 1993. Oxidized glutathione is increased in the alveolar fluid in patients with the adult respiratory distress syndrome. American Review of Respiratory Disease 148: 1174–1178.

    PubMed  CAS  Google Scholar 

  31. Shioji, K., Y. Matsuura, T. Iwase, S. Kitaguchi, H. Nakamura, J. Yodoi, T. Hashimoto, C. Kawai, and C. Kishimoto. 2002. Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thioredoxin: a case report. Circulation Journal 66: 977–80.

    Article  PubMed  Google Scholar 

  32. Jarjour, N.N., and W.J. Calhoun. 1994. Enhanced production of oxygen radicals in asthma. The Journal of Laboratory and Clinical Medicine 123: 131–137.

    PubMed  CAS  Google Scholar 

  33. Hassan, M.Q., R.A. Hadi, Z.S. Al-Rawi, V.A. Padron, and S.J. Stohs. 2001. The glutathione defense system in the pathogenesis of rheumatoid arthritis. Journal of Applied Toxicology 21: 69–73.

    Article  PubMed  CAS  Google Scholar 

  34. Shohrati, M., M. Ghanei, N. Shamspour, F. Babaei, M.N. Abadi, M. Jafari, and A.A. Harandi. 2010. Glutathione and malondialdehyde levels in late pulmonary complications of sulfur mustard intoxication. Lung 188: 77–83.

    Article  PubMed  CAS  Google Scholar 

  35. Shurtz-Swirski, R., S. Sela, A.T. Herskovits, S.M. Shasha, G. Shapiro, L. Nasser, and B. Kristal. 2001. Involvement of peripheral polymorphonuclear leukocytes in oxidative stress and inflammation in type 2 diabetic patients. Diabetes Care 24: 104–10.

    Article  PubMed  CAS  Google Scholar 

  36. Rahman, I., and W. MacNee. 2000. Oxidative stress and regulation of glutathione in lung inflammation. European Respiratory Journal 16: 534–54.

    Article  PubMed  CAS  Google Scholar 

  37. Adcock, I.M., C.R. Brown, C.M. Gelder, H. Shirasaki, M.J. Peters, and P.J. Barnes. 1955. Effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells. American Journal of Physiology 268: C331–8.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Junying Wang, M.D., Mitsuyoshi Utsugi, M.D., Kunio Dobashi, M.D., Masatomo Mori, M.D., Ms. Tomoko Endo, and Ms. Chinori Iijima (Gunma University, Maebashi, Japan) for their valuable general scientific and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Sekine.

Additional information

Contribution of each author: Dr. Mochizuki and Dr. Kobayashi designed the study. Dr. Inoue, Dr. Kobayashi, and Dr. Arakawa collected data. Dr. Inoue, Dr. Sekine, Dr. Suganuma, and Dr. Matsuda analyzed the data. Dr. Sekine prepared the manuscript, with input from Dr. Mochizuki. The final manuscript has been read and approved by all authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, K., Mochizuki, H., Inoue, Y. et al. Regulation of Oxidative Stress in Patients with Kawasaki Disease. Inflammation 35, 952–958 (2012). https://doi.org/10.1007/s10753-011-9398-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9398-1

KEY WORDS

Navigation