Skip to main content

Advertisement

Log in

Anti-inflammatory Activity of n-Propyl Gallate Through Down-regulation of NF-κB and JNK Pathways

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present study aimed to assess anti-inflammatory activity and underlying mechanism of n-propyl gallate, the n-propyl ester of gallic acid. n-Propyl gallate was shown to contain anti-inflammatory activity using two experimental animal models, acetic acid-induced permeability model in mice, and air pouch model in rats. It suppressed production of nitric oxide and induction of inducible nitric oxide synthase and cyclooxygenase-2 in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. It was able to diminish reactive oxygen species level elevated in the LPS-stimulated RAW264.7 macrophage cells. It also suppressed gelatinolytic activity of matrix metalloproteinase-9 enhanced in the LPS-stimulated RAW264.7 macrophage cells. It inhibited inhibitory κB-α degradation and enhanced NF-κB promoter activity in the stimulated macrophage cells. It was able to suppress phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2) and activation of c-Jun promoter activity in the stimulated macrophage cells. In brief, n-propyl gallate possesses anti-inflammatory activity via down-regulation of NF-κB and JNK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

DCFH-DA:

2′,7′-dichlorofluorescein diacetate

DMEM:

Dulbecco's modified Eagle's medium

IC50 :

Half maximal inhibitory concentration

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NO:

Nitric oxide

ROS:

Reactive oxygen species

References

  1. Reddan, J.R., F.J. Giblin, M. Sevilla, V. Padgaonkar, D.C. Dziedzic, V.R. Leverenz, I.C. Misra, J.S. Chang, and J.T. Pena. 2003. Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Experimental Eye Research 76: 49–59.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, C.H., T.Z. Liu, C.H. Chen, C.H. Wong, C.H. Chen, F.J. Lu, and S.C. Chen. 2007. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Molecular Nutrition & Food Research 51: 962–968.

    Article  CAS  Google Scholar 

  3. Karthikeyan, K., B.R. Sarala Bai, K. Gauthaman, and S. Niranjali Devaraj. 2005. Protective effect of propyl gallate against myocardial oxidative stress-induced injury in rat. The Journal of Pharmacy and Pharmacology 57: 67–73.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobi, H., M.-L. Hinrichsen, D. Wess, and I. Witte. 1999. Induction of lipid peroxidation in human fibroblasts by the antioxidant propyl gallate in combination with copper (II). Toxicology Letters 110: 183–190.

    Article  PubMed  CAS  Google Scholar 

  5. Golden, A., J.S. Brugge, and S.J. Shattil. 1990. Role of platelet membrane glycoprotein IIb/IIIa in agonist-induced tyrosine phosphorylation of platelet proteins. The Journal of Cell Biology 111: 3117–3127.

    Article  PubMed  CAS  Google Scholar 

  6. Speck, R. 1994. Comparison of slide platelet aggregation reagents. American Clinical Laboratory 13: 22–23.

    PubMed  CAS  Google Scholar 

  7. Xiao, H., R. Kovics, V. Jackson, and D.G. Remick. 2004. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation. Blood Coagul Fibrinol 15: 199–206.

    Article  CAS  Google Scholar 

  8. Tsukiyama, F., Y. Nakai, M. Yoshida, T. Tokuhara, K. Hirota, A. Sakai, H. Hayashi, and T. Katsumata. 2006. Gallate, the component of HIF-inducing catechins, inhibits HIF prolyl hydroxylase. Biochemical and Biophysical Research Communications 351: 234–239.

    Article  PubMed  CAS  Google Scholar 

  9. Ter Veld, M.G., B. Schouten, J. Louisse, D.S. Van Es, P.T. Van Der Saag, I.M. Rietjens, and A.J. Murk. 2006. Estrogenic potency of food-packaging-associated plasticizers and antioxidants as detected in ERα and ERβ reporter gene cell lines. J Agri Food Chem 54: 4407–4416.

    Article  Google Scholar 

  10. McDonald-Gibson, W.J., S.A. Saeed, and C. Schneider. 1976. The local anti-nociceptive and topical anti-inflammatory effects of propyl gallate in rodents. British Journal of Pharmacology 58: 573–581.

    PubMed  CAS  Google Scholar 

  11. Whittle, B.A. 1964. The use of changes in capillary permeability in mice to distinguish between narcotic and nonnarcotic analgesics. Br J Pharmacol Chemother 22: 246–253.

    PubMed  CAS  Google Scholar 

  12. Ghosh, A.K., N. Hirasawa, H. Niki, and K. Ohuchi. 2000. Cyclooxygenase-2-mediated angiogenesis in carrageenan-induced granulation tissue in rats. The Journal of Pharmacology and Experimental Therapeutics 295: 802–809.

    PubMed  CAS  Google Scholar 

  13. Sherman, M.P., E.E. Aeberhard, V.Z. Wong, J.M. Griscavage, and L.J. Ignarro. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochemical and Biophysical Research Communications 191: 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  14. Kleiner, D.E., and W.G. Stetler-Stevenson. 1994. Quantitative zymography: detection of picogram quantities of gelatinases. Analytical Biochemistry 218: 325–329.

    Article  PubMed  CAS  Google Scholar 

  15. Royall, J.A., and H. Ischiropoulos. 1993. Evaluation of 2′, 7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Archives of Biochemistry and Biophysics 302: 348–355.

    Article  PubMed  CAS  Google Scholar 

  16. Freshney, R.I. 1994. Culture of animal cells: a manual of basic technique, 4th ed, 336–338. New York: Wiley-Liss Press.

    Google Scholar 

  17. Alamed, J., W. Chaiyasit, D.J. McClements, and E.A. Decker. 2009. Relationship between free radical scavenging and antioxidant activity in foods. J Agri Food Chem 57: 2969–2976.

    Article  CAS  Google Scholar 

  18. Lowenstein, C.J., E.W. Alley, P. Raval, A.M. Snowman, S.H. Snyder, S.W. Russell, and W.J. Murphy. 1993. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America 90: 9730–9734.

    Article  PubMed  CAS  Google Scholar 

  19. Baldwin, A.S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annual Review of Immunology 14: 649–681.

    Article  PubMed  CAS  Google Scholar 

  20. Vogel, H.G., and W.H. Vogel. 1997. Drug discovery and evaluations, pharmacological assays, 402–403. Berlin: Springer.

    Google Scholar 

  21. Singh, V.K., S. Mehrotra, P. Narayan, C.M. Pandey, and S.S. Agarwal. 2000. Modulation of autoimmune diseases by nitric oxide. Immunologic Research 22: 1–19.

    Article  PubMed  CAS  Google Scholar 

  22. Cuzzocrea, S. 2006. Role of nitric oxide and reactive oxygen species in arthritis. Current Pharmaceutical Design 12: 3551–3570.

    Article  PubMed  CAS  Google Scholar 

  23. Chesrown, S.E., J. Monnier, G. Visner, and H.S. Nick. 1994. Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-gamma, TGF-beta, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochemical and Biophysical Research Communications 200: 126–134.

    Article  PubMed  CAS  Google Scholar 

  24. Nordberg, J., and E.S. Arner. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology & Medicine 31: 1287–1312.

    Article  CAS  Google Scholar 

  25. Bubici, C., S. Papa, K. Dean, and G. Franzoso. 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25: 6731–6748.

    Article  PubMed  CAS  Google Scholar 

  26. Mott, J.D., and Z. Werb. 2004. Regulation of matrix biology by matrix metalloproteinases. Current Opinion in Cell Biology 16: 558–564.

    Article  PubMed  CAS  Google Scholar 

  27. Sorsa, T., L. Tjäderhane, Y.T. Konttinen, A. Lauhio, T. Salo, H.-M. Lee, L.M. Golub, D.L. Brown, and P. Mäntylä. 2006. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Annali Medici 38: 306–321.

    Article  CAS  Google Scholar 

  28. Annabi, B., J.C. Currie, A. Moghrabi, and R. Béliveau. 2007. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leukemia Research 31: 1277–1284.

    Article  PubMed  CAS  Google Scholar 

  29. Hsiang, C.-Y., S.-L. Wu, J.-C. Chen, H.-Y. Lo, C.-C. Li, S.-Y. Chiang, H.-C. Wu, and T.-Y. Ho. 2007. Acetaldehyde induces matrix metalloproteinase-9 gene expression via nuclear factor-κB and activator protein 1 signaling pathways in human hepatocellular carcinoma cells: association with the invasive potential. Toxicology Letters 171: 78–86.

    Article  PubMed  CAS  Google Scholar 

  30. Jachak, S.M. 2006. Cyclooxygenase inhibitory natural products: current status. Current Medicinal Chemistry 13: 659–678.

    Article  PubMed  CAS  Google Scholar 

  31. Mandrekar, P., D. Catalano, and G. Szabo. 1999. Inhibition of lipopolysaccharide-mediated NF-κB activation by ethanol in human monocytes. International Immunology 11: 1781–1790.

    Article  PubMed  CAS  Google Scholar 

  32. Ajizian, S.J., B.K. English, and E.A. Meals. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. The Journal of Infectious Diseases 179: 939–944.

    Article  PubMed  CAS  Google Scholar 

  33. Raingeaud, J., S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch, and R.J. Davis. 1995. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. The Journal of Biological Chemistry 270: 7420–7426.

    Article  PubMed  CAS  Google Scholar 

  34. Minden, A., and M. Karin. 1997. Regulation and function of the JNK subgroup of MAP kinases. Biochimica et Biophysica Acta 1333: F85–F104.

    PubMed  CAS  Google Scholar 

  35. Wang, X., J.L. Martindale, and N.J. Holbrook. 2000. Requirement for ERK activation in cisplatin-induced apoptosis. The Journal of Biological Chemistry 275: 39435–39443.

    Article  PubMed  CAS  Google Scholar 

  36. Communal, C., W. Colucci, and K. Singh. 2000. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. The Journal of Biological Chemistry 275: 19395–19400.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, B., M. Fang, Y. Lu, Y. Lu, G.B. Mills, and Z. Fan. 2001. Involvement of JNK-mediated pathway in EGF-mediated protection against paclitaxel-induced apoptosis in SiHa human cervical cancer cells. British Journal of Cancer 85: 303–311.

    Article  PubMed  CAS  Google Scholar 

  38. Kim, S.-J., H.-J. Jeong, K.-M. Lee, N.-Y. Myung, N.-H. An, W.M. Yang, S.K. Park, H.-J. Lee, S.-H. Hong, H.-M. Kim, and J.-Y. Um. 2007. Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. The Journal of Nutritional Biochemistry 18: 587–596.

    Article  PubMed  CAS  Google Scholar 

  39. Hou, D.-X., S. Masuzaki, F. Hashimoto, T. Uto, S. Tanigawa, M. Fujii, and Y. Sakata. 2007. Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated macrophages: molecular mechanisms and structure–activity relationship. Archives of Biochemistry and Biophysics 460: 67–74.

    Article  PubMed  CAS  Google Scholar 

  40. Hou, D.-X., D. Luo, S. Tanigawa, F. Hashimoto, T. Uto, S. Masuzaki, M. Fujii, and Y. Sakata. 2007. Prodelphinin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-κB pathway. Biochemical Pharmacology 74: 742–751.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0072536). We wish to acknowledge Ms. Hyun-Jung Kang for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jin Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HJ., Kim, SJ., Jeon, WK. et al. Anti-inflammatory Activity of n-Propyl Gallate Through Down-regulation of NF-κB and JNK Pathways. Inflammation 34, 352–361 (2011). https://doi.org/10.1007/s10753-010-9241-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9241-0

KEY WORDS

Navigation